个完整的科学的宇宙论和科学理论体系, 奠定科学素养 《自然哲学之数学原理》是人类掌握的个完整的科学的宇宙论和科学理论体系,其影响遍布了经典自然科学的所有领域。牛顿总结了近代天体力学和地面力学的成就,为经典力学规定了一套基本概念,提出了力学的三大定律和万有引力定律。全书分为四个部分,首先对书中的定义和运动定律做了说明,从物体的各种运动形式和在阻滞介质中摆体的运动,到宇宙星体的运动详细论述。这本书意味着经典力学的成熟,其中所建立的经典力学的理论体系成为近代科学的标准尺度。
与历史上的数学天才一起挑战头脑体操! 315个经典游戏开发大脑潜能,呈现数学之美。 在《迷人的数学》中,世界智力游戏专家、百万级书《大脑游戏天书》作者伊凡?莫斯科维奇,用他标志性的精彩图解,呈现了315个经典烧脑游戏,其中不许多历史上的数学谜题,也有他自己设计的独特游戏。 作者也巧妙地将从史前时代到21世纪的数学史融入这些游戏题中,让你在挑战谜题、开启大脑潜能的同时,了解数学前进的轨迹,领略数学的迷人魅力。这是一本有观点、有故事的数学益智书,献给所有热爱美感、惊奇、挑战、数学与游戏的人。
本丛书是一套世界经典青少年科普读物。在书中,科普大师别莱利曼不仅向小读者们讲述了物理学、数学、天文学的常识和基础知识,还运用各种奇思妙想和让人意想不到的分析,为小读者解密科学谜题、解析科幻故事,激发小读者对学习科学知识产生更浓厚的兴趣,让小读者学会活学活用科学知识。 通过阅读本书,读者不仅可以轻松爱上科学学习,还能激活无穷的科学想象力,掌握科学思维的技巧。同时,对各种生活现象与科学知识的内在联系也能产生深刻的认识。总之,这是一套通俗易懂、妙趣横生、引人入胜而又让人受益无穷的超级科普读物!
《如何破解达芬奇密码?——35问揭示数学之美》是一本数学科普书。作者通过如何成为数学家、如何在股市掘金、如何生出漂亮宝宝、如何破解达芬奇密码等35 个有趣的问题,涵盖了数学发展史的方方面面,展示了数学世界的多彩和美丽。 《如何破解达芬奇密码?——35问揭示数学之美》适合对数学感兴趣的各层次读者阅读。
《现代数学基础丛书·典藏版81:代数学中的Frobenius结构》共分12章,前面B章主要论述Frobenius结构在一个域上的代数中的运用,尤其是总结了其一般情形的Frobenius环、quasi-Frobenius环的一系列重大进展,后面4章论述了Frobenius结构在一个域上的余代数和Hopf代数中的运用,系统地讨论了Frobenius余代数、qoasi-Frobenius余代数和Frobenius Hopf代数的一系列新进展,特别地还介绍了Frobenius代数、Frobenius Lie代数在求解Yang-Baxter方程方面的奇特功效。 《现代数学基础丛书·典藏版81:代数学中的Frobenius结构》可供代数学的研究生、数学系高年级本科生、数学工作者阅读。
从出版方面来讲,除了较好较快地出版我们自己的成果外,引进国外的先进出版物无疑也是十分重要与必不可少的。从数学来说,施普林格(Springer)出版社至今仍然是世界上的出版社。科学出版社影印一批他们出版的好的新书,使我国广大数学家能以较低的价格购买,特别是在边远地区工作的数学家能普遍见到这些书,无疑是对推动我国数学的科研与教学十分有益的事。 这次科学出版社购买了,一次影印了23本施普林格出版社出版的数学书,就是一件好事,也是值得继续做下去的事情。大体上分一下,这28本书中,包括基础数学书5本,应用数学书6本与计算数学书12本,其中有些书也具有交叉性质。这些书都是很新的,2000年以后出版的占绝大部分,共计16本,其余的也是1990年以后出版的。这些书可以使读者较快地了解数学某方面的前沿,例如基础数学中的数论、
本书是在作者多年教学实践的基础上,参考有关资料专为工科大学生、研究生和数学建模竞赛培训而编写的数学实验基本教材和参考资料,全书分为三篇.篇为MATLAB语言与基本数学实验,共有5章,旨在使读者初步掌握MATLAB语言,了解运用MATLAB辅助数学学习的方法;第二篇为数值分析,共有7章42个实验,旨在使读者能对数值分析中主要概念、数值算法有更进一步的认识,掌握MATLAB编程,学会运用MATLAB解决科学计算问题;第三篇为数学建模,共有6章14个实例,旨在使读者学会运用线性代数、微积分、常微分方程、概率论与数理统计和MATLAB等知识解决一些实际问题,了解数学建模的概念和一般步骤。 本书可以作为高等院校数值分析实验课、数学建模实验课、MATLAB语言和数学建模竞赛培训的教材,也可供高校师生和科技工作者参考。
本书主要内容包括数学悖论,次、第二次、第三次数学危机,哥德尔 不可判定命题、混沌等非平凡问题;离散数学当中的有趣问题;数学思想与数学哲学当中的敏感问题等。如将来数学还会产生悖论与危机吗?尚未解决的数学难题是否为不可判定命题?既然是确定性系统为什么会产生紊动?愚公移山式的穷举法为什么可能无效?牛顿创立的微积分能得100分吗?数学家是些什么人?数学定理为什么要证明?等等。本书集知识性、思想性和趣味性为一体,说理直观严密,通俗易懂,充分展示数学之美妙,之深刻。 本书读者对象为中学生、大学生、中小学教师及数学工作者。
由张景中所著的这本文集《面积关系帮你解题(精)/张景中科普文集》共18册,包含了作者从上世纪八十年代以来三十多年间的数学科普作品。作者有关面积方法的靠前本书。建立面积解题基本工具,系统地介绍了如何用面积关系证明相等、不等、成比例、共点共线等。本丛书力求形成直白通俗与含蓄深奥的结合,让读者容易进入而难于舍弃。它可以当作休闲娱乐的书籍随便翻翻,有助于排遣工作疲劳;也可以作为教师的参考资料,有助于活跃课堂气氛,启迪学生心智;还可以作为学生的课外读物,有助于开阔眼界、增长知识、锻炼逻辑思维能力。
1632年8月10日,5名身着黑袍的男子聚集在昏暗的罗马宫殿里,就一个看似简单的命题进行讨论: 一条连续的线由不同的、无穷小的部分组成。教士们大笔一挥,严令禁止无穷小的传播,宣布永远不许传授或提及无穷小概念。他们认为,它是危险和颠覆性的,是对当时信仰的极大威胁,即世界井然有序,由严格和不变的规则所统治约束。如果无穷小被接受,他们担心,整个世界将陷入混乱。 在本书中,享有盛誉的历史学家阿米尔·亚历山大披露了教士裁决背后的深层原因,并揭示了无穷小和不可分量学说是如何持续存在,并成为微积分和大多数现代数学与技术的基石的这段历史。事实上,并不是每个人都同意教士们的观点。欧洲各地的哲学家、科学家和数学家都将“无穷小”视为科学进步、思想多元的关键。正如亚历山大所揭示的,不久,这两个阵营就展开了一场战争