★张益唐、吴军力荐! 国民教师 李永乐数学科普作品! ★神奇提分、神奇爱上数学!让孩子更接近自己的名校梦! ★不一样的数学思维,让孩子鹤立鸡群 ★开拓数学眼界,训练数学思维,感受数学之美 ★开启青少年数学思维,开拓数学视野 ★不枯燥、不无聊,100 脑洞大开的问题,神奇的数学太好玩了! ★严谨的解读 有趣的生活案例,数学竟然如此有趣! 《神奇的数学》,6大数学门类,100 脑洞大开的问题:考清华和中500万元哪个更难?葫芦娃救爷爷,为啥一个一个上?一个西瓜切4刀,最多有几块?如何公平地切蛋糕?囚徒困境是怎么回事?香蕉皮和橘子皮,谁能展成平面? 数学从未如此好玩!
数学家都是怎样思考的?他们的工作到底是什么?他们如何在日常生活中发现种种与数学有关的猜想并加以证明?为什么一个尚未解开的数学猜想,会让近一个世纪的数学家为之痴迷?《大开眼界 数字的秘密生活:*有趣的50个数学故事》分为六个部分,除了介绍英雄般的数学家、描述著名的无解猜想和破解数字难题的精彩过程外,还穿插了《圣经》密码、俄罗斯方块、牛顿的世界末日预言等令人着迷的故事。这些情节丰富、充满娱乐性的小插曲,让我们看到数学跨越了生活的每一个层面,从法律到地理,从选举到植物学,带给我们愉悦和惊喜。
《数学史(第三版)》由国际科学史研究院院士卡尔 B.博耶和哈佛大学数学与科学史博士尤塔 C.默茨巴赫所著,博耶和默茨巴赫按照时间、空间和学科演化三个维度,把数学几千年的发展浓缩为这本引人入胜的编年史。本书涵盖了数学发展的整个历程,可以对数学获得一个完整的认知。从希腊人到哥德尔,数学一直辉煌灿烂,名人辈出,观念的潮涨潮落到处清晰可见。而且,尽管追踪的是欧洲数学的发展,但作者并没有忽视中国文明、印度文明和阿拉伯文明的贡献。毫无疑问,这本书是一部经典的关于数学及创造这门学科的 数学家们的单卷本历史著作。进入21世纪,数学高速发展,很多学科获得突破性的进展,本书的第三版同时做了更新,使得数学史更加完整。特别值得一提的是,本书视野开阔,并没有局限于西方视角,对于古代中国的数学发展也有较为详细的介
在了解这个世界的过程中,现实经常会挑战我们的感官和直觉,让我们震惊不已。这时,数学就像一把雨伞,当撑开这把雨伞时,我们仿佛进入了一个奇特的境界,有了迈向真相、行走在谜团中的勇气;当收起这把雨伞时,我们会发现自己的认知已大不一样,所谓的 理所应当 和 显而易见 将被摒弃,现实背后隐藏的真相将带来巨大的启发。这就是数学的力量。 从代数、几何到相对论,从温度计到黑洞,作者用简洁而生动的笔触阐释了如何更好地思索、观察与理解世界。让我们带上好奇心,撑开数学这把大伞,在宇宙的奥秘中漫步,体会解开疑惑后,如雨过天晴般的愉悦。
《欢乐数学》 这本书就是奥尔林老师课堂的延续,书中融入了400多幅他标志性的 烂插画 、火柴人形象、幽默的笑话,书里没有几个方程式(有也是装饰),也不讲解题细节。这本书告诉所有人,数学在生活中无处不在:城市建设要用到几何学,A4纸的尺寸为什么是合理的,蚂蚁从高处掉下来为什么摔不死 从烤蛋糕、看球赛、玩桌游到买彩票、考试、遗传基因,你会发现一切问题都是数学问题。 通过所有这些有趣的例子,奥尔林老师关注的是让所有人认识到数学真正的核心:思维。他告诉孩子和所有人,学数学不是为了无聊地秀智商,而是可以学会用数学思维看待这个世界的运行,发现数学的魅力。 《欢乐数学之疯狂微积分》 微积分与日常生活有哪些交集? 本书通过28个引人入胜的故事,展示了微积分这种语言,它可以解决我们人类每天都在努力解决的问题
从数学的角度来看,世界是由微分和积分构成的。因此,学习微积分就是我们主动了解我们生活的世界的一种方式。微积分在数学中占据着重要的地位,是一个充满数学魅力和乐趣的领域。 然而,微积分的理论性非常强,学习难度大,是最容易挫伤学生学习数学积极性的部分之一。为了最大限度地发挥学生的主观能动性,在最短的时间内抓住并阐明本质,本书以师生对话的方式,配以简单的图片,用浅显易懂的文字说明了微积分的基本原理。 本书共包括四个部分,分别是:课前准备、60分钟揭开微积分神秘面纱的四大步骤、所谓 微分 是指什么?、所谓 积分 是指什么?。 本书通过日常生活中的常见事例说明了微积分的基本原理、公式推导过程及实际应用意义。本书讲解循序渐进,生动亲切,没有烦琐复杂的计算过程,是一本写给不擅长数学的成年人的学习微积
这是一本充满欢乐的数学书。作者本 奥尔林在做数学老师的十几年里发现,大多数学校都把数学这门课教得乏味透顶,他自己开始也是这样。有一天他在解释一道题时画了一条滑稽的小狗,惹得学生们哄堂大笑,这让他豁然开朗:孩子们看到一向聪明、专业的老师画的画这么 烂 ,突然觉得数学不再高高在上,而是变得可亲起来。从此,他的数学课充满了欢声笑语,学生有了飞跃的进步,并且获得了数学学习的秘籍 理解。 这本书就是奥尔林老师课堂的延续,书中融入了400多幅他标志性的 烂插画 、火柴人形象、幽默的笑话,书里没有几个方程式(有也是装饰),也不讲解题细节。这本书告诉所有人,数学在生活中无处不在:城市建设要用到几何学,A4纸的尺寸为什么是合理的,蚂蚁从高处掉下来为什么摔不死 从烤蛋糕、看球赛、玩桌游到买彩票、考试、遗传基因
《从一到无穷大》是当今世界最有影响的科普经典名著之一,20世纪70年代末由科学出版社引进出版后,曾在国内引起很大反响,直接影响了众多的科普工作者。本书根据原书最新版进行了修订,书中以生动的语言介绍了20世纪以来科学中的一些重大进展。先漫谈一些基本的数学知识,然后用一些有趣的比喻,阐述了爱因斯胆的相对论和四维时空结构,并讨论了人类在认识微观世界(如基本粒子、基因)和宏观世界(如太阳系、星系等)方面的成就。全书图文并茂,幽默生动,深入浅出,适合中等以上文化水平的广大读者阅读。
本书为日本数学家、菲尔兹奖得主广中平?v的思想文集。书中以“创造性思维”为线索,讲述了作者在数学研究中总结出的思考模式——“可变思考”,并在问题的发现、提出、整理、转换等方面做了具体阐述,让读者了解数学家独特的多维度思考方法。同时,本书还对日本数学教育中的问题做了分析,提出了学校教育、亲子教育中培养创造性思维的原则与方法。本书是广中平?v先生对自己研究方法的系统性总结,是了解其思想以及日本数学研究方法的珍贵资料。
《欢乐数学》 兴趣引导,学会用数学的眼光看世界。 数学家眼中的数学是什么样的?A4纸的尺寸为什么是合理的?蚂蚁从高处掉下来为什么摔不死?从烤蛋糕、看球赛、玩桌游到买彩票、考试、遗传基因,你会发现一切问题都是数学问题。 《欢乐数学之疯狂微积分》 原理入门,形象解读微积分思想精髓。 牛顿和莱布尼茨到底谁的贡献大?用黄瓜片和牙签就可以演示如何求圆的面积和周长?福尔摩斯因为不懂微积分而破不了案?你还会知道为何月亮不会坠落、什么是拐点和指数级增长 《欢乐数学之游戏大闯关》 玩即是学,用游戏锻炼数学思维。 终极井字棋、豆芽游戏、收税员、星系棋 70多款世界各国经典数学游戏,从逻辑到概率,从几何到拓扑,从组合到博弈论。只需纸、笔、几个硬币,学会1分钟,好玩1辈子。自己玩、亲子玩、同学玩,在游戏中轻松领会
无穷大到底有多大?空间有内外之分吗?原子是如何构成的?三维世界的我们如何想象四维空间?生物与非生物的界限在哪里? 《从一到无穷大》以生动有趣的语言,深入浅出地介绍了数学、物理学、生物学及天文学的基本概念与前沿知识。从基础的数学概念如大数与无穷大,到相对论、量子力学等深奥理论,再到生物遗传、宇宙结构等宏大议题,通过一个个故事串联,将复杂的科学概念变得易于理解,让我们在享受阅读乐趣的同时,拓宽科学视野,领略自然科学的魅力。无论是对科学感兴趣的初学者还是有一定科学基础的读者,都能从中受益匪浅。
人类什么时候在绳子上打下个结? 为什么位女数学家会死于非命? 有可能把一个球体的内部翻转出来吗? 这些只是这本插图精美的书中涉及的众多引人深思的问题的一小部分。作者皮寇弗为我们展示了数学发展史重要的里程碑事件背后的魔力与神奇,包括人类曾经思索过的古怪的问题,从公元前一亿五千万年到的前沿突破。 数学已经渗入每一个科学领域,并且在生物学、物理、化学、经济、社会学和工程等方面扮演着无法替代的角色。我们可以用数学说明夕阳色彩分布的情况,也可以用来说明人类的大脑结构,可以帮助我们探索比原子还小的量子世界,也可以帮助我们描绘遥不可及的银河系。 在现实世界运用的著名计算公式和数学定理背后隐藏着数学家们一生的传奇故事。跟随皮寇弗踏上这趟数学之旅,探索数学历重要的250个里程碑事件,从蚂蚁计数到把
麦克斯韦方程组以一种近乎完美的方式统一了电和磁,并预言光就是一种电磁波,这是物理学家在统一之路上的巨大进步。很多人都知道麦克斯韦方程组,知道它极尽优美,但是能看懂这组方程的人却不多,因为它需要用到微积分,并不像许多方程那样简单直观。 因此,《什么是麦克斯韦方程组》会依然延续「长尾科普系列」的风格,继续用通俗的语言和缜密的逻辑将麦克斯韦方程组的前前后后都讲清楚,让不懂微积分的中小学生也能轻松读懂这组伟大的方程。 全书行文流畅,语言生动,图文并茂,可读性强。是一部不可多得的原创科普佳作。 强烈推荐给对世界充满好奇心的8-120岁的 少年 。
当今的数学是2000多年来数学家的智慧和努力的结晶,他们的个性和生活经历往往与他们的数学成就一样非凡。本书通过50篇简短的传记,按照年代顺序记录了这些成就。 在书中所描述的这些令人神往的人物中,艾萨克 牛顿较为人引注目,他是物理学和微积分的奠基人,经常与科学家同行发生争吵,并且沉迷于炼金术。苏菲 热尔曼曾以一名以前注册过的男生的名字秘密地在巴黎高等理工学院学习,她因在费马大定理和弹性理论方面的工作而为人们所铭记。艾米 诺特被阿尔伯特 爱因斯坦描述为数学史上重要的女性,她为抽象代数的发展做出了重要贡献。在物理学方面,她阐明了守恒定律与对称性之间的联系。斯里尼瓦瑟 拉马努扬来自印度,出身卑微,几乎没有接受过正式的数学训练,却对数学分析、数论无穷级数和连分数做出了重大贡献。另外,书中还介绍了其他
本书主要涉及大一上学期要学的一元微积分,书中从高中阶段十分熟悉的数列出发,引出数列极限的概念,进而引出函数极限的定义,并由此引申出导数、微分、积分,其间穿插讲解无穷小量、无穷大量、函数凹凸性、极值与最值等内容,并简单介绍了各类中值定理(罗尔中值定理、拉格朗日中值定理、柯西中值定理)、洛必达法则、泰勒公式等常用定理和公式。全书语言幽默,文风轻快,用较短的篇幅将微积分入门的基础概念生动地展示出来。 这是为大一新生而写的数学书,主要有以下特点: 1.尽量由中学数学知识引出大学数学的内容; 2.不面面俱到,不追求绝对严谨; 3.通俗易懂, 保姆级 的讲解; 4.借用国学精粹引入数学概念; 5.适当讲述数学典故,激发学习兴趣; 6.穿插一些数学幽默小故事,缓解学习的紧张感; 7.让数学与生活挂钩; 8.玩梗,也
《自然哲学的数学原理》书中牛顿的成就多到数不胜数,明显的例子就是牛顿运动定律,这一定律至今仍然传授于世界各地。牛顿为微积分提供了概念基础,尽管他在书中没有明确使用微积分,但精通数学的读者可能会猜测牛顿正在使用一种新技术。至关重要的是,牛顿从他的平方反比定律推导出了开普勒三定律。他证明了开普勒方程没有代数解,并提供了计算方法。在牛顿这部划时代伟大的著作中,读者更能欣赏到他在物理学之外的卓越成就。牛顿在本书中的只言片语,如今也将被成千上万的作者呈现在无数论文中,这是科学的胜利。牛顿不仅解决了长期以来如何求证行星轨道的难题,而且还用他的理论解释了很长时间里独立且无法解释的现象:潮汐、岁差、月球的轨道、单摆模型和彗星的出现。在本书中,牛顿证明了现代科学的标志是什么 将尽可能多种不同
微积分与日常生活有哪些交集? 本书通过28个引人入胜的故事,展示了微积分这种语言,它可以解决我们人类每天都在努力解决的问题 爱、风险、时间,以及重要的事情 变化 。 书分为 瞬间 和 永恒 两部分,从夏洛克 福尔摩斯到马克 吐温,它将发掘微积分、艺术、文学和一只与猫王同名的柯基犬之间的联系。 你将看到奇怪的符号、疯狂跳跃的逻辑以及微积分的真正用途。无论是数学恐惧症患者还是数学发烧友,这都将是一本影响终生的书。
在2002年一篇曾引发数学界巨大反响的文章《一个数学家的叹息》中,保罗 洛克哈特猛烈抨击了美国中小学数学教育的现状:学生只是被要求记住公式,并在练习题中反复套用,而这一创造性过程应有的兴奋、喜悦乃至痛苦和挫败却不见了。 在洛克哈特看来,数学是一门艺术,而老师教授数学的方法应该是,向学生诚实地传递自己对于这门学科的热爱,激发和激励他们与生俱来的好奇心,并帮助和引导他们实际投身到这段迷人的旅途中去。 本书正是洛克哈特这一思想的好体现。他对数学的热爱在字里行间显露无遗,同时他也不讳言旅途的艰难。本书分为两个部分,分别介绍了对形状和运动的度量。他以平实的语言将几何学和微积分的复杂概念以及两者之间的精妙关联解释得清晰易懂,生动展示了数学家都在做什么,以及他们为什么要这么做。
你可能还依稀记得在学校学过的数学:几何、代数、微积分,也可能你早就将这些知识抛在脑后。你可能精于计算,也可能罹患 数学恐惧症 ,千方百计地避免和数字打交道。无论你是哪种人,数千年来人类在数学上的非凡成就,都塑造和改变了你的世界和人生。 哥伦布发现新大陆得益于对三角形的理解,现代工业社会的诞生则始于对数字的掌握。数学为文艺复兴递上凿子,也促进了世界各地伟大建筑的诞生。数字是全人类的通用语言,语言不通的商人得以依靠数学建立互利贸易。数学也是燃料,助力人类实现从自由市场到登月的一系列抱负。 我们的生活方式、制度和基础设施均建立在数字之上。无论商业、住房、医药、政治、战争、农业,还是艺术、旅行、科技,几乎我们存在的每一个方面都以数学为基础被建立起来。人类的故事与数学密切交织,我们永远
《烧掉数学书》是一本全新概念的数学科普。这本书的一大特点是抛开传统晦涩的数学符号和讲述方式,另起炉灶,从零开始,用年轻人易于接受的语言阐释高深的数学知识和概念。这本书打破了数学教育界认为在讲授微积分之前必须花大量时间和精力学习微积分的严格化基础的惯例,从理解微积分本身的用途和方法着手,反过来再提出微积分基础严格化的问题,从而顺理成章地引出极限和逼近等概念。这种方法更符合人们的学习和认知规律,让人能自然而然地接受和理解这些抽象的概念和技巧的源流和必要性,从而为深入的学习打下好的基础。
《九章算术》是人类科学史上应用数学的 算经之首 ,也是中国古代算法的扛鼎之作,更是一部与《几何原本》并列为世界两大数学体系的代表作。全书总共收集246个数学问题并提供其解法,这些算法要比欧洲同类算法早1500多年,对世界数学发展产生了重要影响。 《九章算术》提出正负数的概念,特别是负数概念的提出,是人类关于数的认识的一次重大飞跃。在印度,直到7世纪才出现负数的概念;而欧洲比印度还晚1000年,直到17世纪才有人提出负数的概念。 《九章算术》提出 盈不足术 ,即用两次假设,可以把一般方程式化为盈不足问题,用 盈不足术 求解。而这一解法,直到13世纪才由阿拉伯人传至欧洲,被欧洲人称为 契丹算法 (即 中国算法 )。 《九章算术》系统叙述了分数的约分、通分和四则运算法则,提出了 线性方程组 的概念,并系统地总结了它
由数学大师和著名数学家亲自执笔撰写的这套数学小丛书是我国数学普及读物中的精品,曾激发一代青少年学习数学的兴趣。书中蕴涵的深刻而富有启发性的思想,促进了无数中学生在求学的道路上健康成长。
《超图解秒懂数学》采用独特的图解方法阐释数学的基本原理,将抽象的数学知识形象化、生活化、趣味化,图文并茂,轻松培养读者的数学思维和图形化思维能力。全书分为数与式、图形、方程式与函数、概率与统计四大版块,全面涵盖了从小学到高中的数学基础概念,并配有各年级学习内容对照表,方便读者按需学习。 本书在编排上充分考虑到各类读者群体的需求。对小学生来说,父母的辅导不仅能够提升他的成绩,而且能够加深亲子感情,因此对于加法、减法、分数、小数等小学知识,本书运用全彩的数字、有趣的插图和例题,吸引孩子的兴趣,让父母和孩子都能够快乐地沉浸在数学世界中。对初高中生而言,想要取得好成绩,自学不可或缺,因此对于方程、函数、概率、微积分等初高中数学知识,本书利用简单的插图、生活化的例题、清晰的
你以为无解的方程组真的无解吗? 维特根斯坦说: 数学是各式各样的证明技巧。 如何用数学重新求证我们的人生? 小到电饭锅为什么不会糊底,筷子夹不起来豌豆怎么办;大到如何更好地与他人相处,如何选择自己的职业。这些看似与数学无关的问题其实都蕴含着深刻的数学思维。 勤能补拙的大数定律、权衡利弊的稀疏概念、貌合神离的条件独立、精益求精的数值解法、体现中庸之道的小二乘法 数学公式和算法背后的智慧帮助我们更好地看清这个世界,并在遇到问题时提供更科学的视角,帮助我们做出更好的决策。很多事情的终结果是我们不能预见的,但是,这个结果发生的概率是我们可以靠努力提高的。 《心中有数》教你像电脑的处理器一样,快速、深层地剖析事物的 利与弊 ,在接受不完美的前提下,通过数学思维权衡多方的利益,找到的解题
《几何原本》是现代数学的基础,大约成书于公元前300年。被称为有史以来最为成功的教科书。 《几何原本》全书共13卷,1-6卷的主要讲平面几何,7-8卷主要阐述数论,10卷讲不可公度线段,11-13卷主要讨论立体几何。19世纪之前,如果说有一门学科的知识一直被当作 真理 的完美典范的话,那它就是欧几里得几何。它被普遍作为一种绝对精确、永远有效的推理结构。 后世的许多伟人都称自己受到《几何原本》的巨大影响。 牛顿的《自然哲学之数学原理》写作结构完全仿造《几何原本》。爱因斯坦曾言: 第一次看到《几何原本》这本书就惊为天人。 徐光启首次将《几何原本》翻译为中文时,盛赞 能精此书者,无一事不可精;好学此书者,无一事不可学。