SQL是使用*广泛的数据库语言,绝大多数重要的 DBMS 支持 SQL。本书由浅入深地讲解了SQL的基本概念和语法,涉及数据的排序、过滤和分组,以及表、视图、联结、子查询、游标、存储过程和触发器等内容,实例丰富,便于查阅。新版对书中的案例进行了全面的更新,并增加了章后挑战题,便于读者巩固所学知识。
本书第1版于1983年出版,至今已修订至第6版。教材出版近40年来为全国数百所高校采用。本书三次荣获优秀教材奖(1988年、2002年、2021年)。相应课程先后入选北京市精品课程、精品课程、精品资源共享课程、精品在线开放课程和一流本科课程。 本书系统全面地阐述了数据库系统的基础理论、基本技术和基本方法。全书分为4篇18章。篇基础篇,包括绪论、关系数据模型、关系数据库标准语言SQL、数据库安全性和数据库完整性,共5章。第二篇设计与应用开发篇,包括关系数据理论、数据库设计和数据库编程,共3章。第三篇系统篇,包括关系数据库存储管理、关系查询处理和查询优化、数据库恢复技术、并发控制和数据库管理系统概述,共5章。第四篇新技术篇,包括数据库发展概述、大数据管理系统、数据仓库与联机分析处理、内存数据库系统、区块链与数据库,共
本书是一本基于 Python 实现全部例题计算的统计学教材,书中例题解答均给出了详细的实现代码和结果。全书共 11 章,第1章和第2章介绍数据、Python 的下载与安装、Python的数据类型和基本操作、Python 绘图基础等。第3章和第4章介绍数据的描述性分析方法,包括数据可视化和描述统计量。第5~7章介绍数据的推断性分析方法,包括概率分布、参数估计和假设检验。第8~11章介绍实际中常用的一些统计方法,包括类别变量分析、方差分析、回归分析、时间序列分析等。 本书可作为高等院校各专业开设统计学课程的教材,也可作为数据分析工作者、Python 数据分析和可视化爱好者的参考书。
数据分析是现在不仅在互联网行业同时也在基础行业中必不可缺的运营手段,是业务提升效率、增强收益的有效方法。 本书的前8个章节精选提炼了多种数据分析中重要方法,包括ROI分析、数据标签和评分、用户生命周期、因果推断、可解释模型、PSM理论、ABtest、时序分析等,并通过更清晰、简单的方式向读者全方位的展示数据分析在以下诸多原理上的阐释,并且针对每种方法都提供了充足的生活和业务中的前沿案例作为辅助讲解,帮助读者更好的理解数据分析在传统行业、互联网行业及各类新兴行业的实际应用,同时也能更快的运用在实际工作和生活中,所以通过阅读前8个章节,读者可以系统的学习数据分析的理知识,拥有数据化思维,为读者能够在数据分析行业中不断深耕打下良好的理论基础并将数据分析能力逐步应用于实际的工作和生活中,成为一名合格的
这是一本需要 动手实践 的图书,通过带领大家从零构建一款分布式向量数据库,让大家透彻理解向量数据库的技术原理和实现细节。 本书共分为三大部分,内容由浅入深、循序渐进。 第一部分 认识向量数据库 (第1~3章)是基础篇,介绍向量数据库的基础知识,涵盖向量及数据库的基本概念、向量数据库的发展历程和核心功能。 第二部分 构建向量数据库 (第4~6章)是核心篇,详细介绍如何从零开始构建并优化向量数据库,巨细靡遗地展示数据库内核的技术实现细节并辅以代码示例、技术架构图等,旨在让大家真正实现动手写向量数据库。 第三部分 向量数据库的实践与展望 (第7~8章)是结束篇,通过实践案例展示向量数据库在AI应用中的使用方法,并尝试勾勒向量数据库的未来。 本书面向数据库开发人员、数据库管理员、数据库架构师等数据库从业人
《谁说菜鸟不会数据分析》(入门篇)是一本有趣的数据分析书!本书基于通用的Excel工具,加上必知必会的数据分析概念,以小说般通俗易懂的方式讲解。本书基于职场三人行来构建内容,完全按照数据分析工作的完整流程来讲解。全书共8章,依次讲解数据分析必知必会知识、数据分析的结构化思维、数据处理技巧、数据展现的技术、提升图表之美的专业化视角,以及专业分析报告的撰写方法等内容。本书有足够的魅力让你一口气读下去,在无形之中掌握数据分析的技能,提升职场竞争能力。本书能有效帮助职场新人提升职场竞争力,也能帮助市场营销、金融、财务、人力资源管理人员及产品经理解决实际问题,还能帮助从事咨询、研究、分析行业的人士及各级管理人士提高专业水平。
《问卷数据分析:破解SPSS软件的六类分析思路(第2版)》系统介绍了使用SPSS软件进行问卷数据分析的思路及方法,分为四部分,分别是问卷设计、六类问卷分析思路、数据分析方法在SPSS软件中的操作和答疑解惑。其中问卷设计部分适用于所有读者,建议读者在设计问卷前详细阅读这部分内容。读者可以结合实际情况选读六类问卷分析思路部分的内容。数据分析方法在SPSS软件中的操作部分详细讲解了各类数据分析方法在SPSS软件中的操作细节,并且对输出结果进行说明。答疑解惑部分罗列了使用各类分析方法时常见的疑难杂症,并且提供了解决方法。本书侧重于问卷分析的应用性,力求让读者在*短的时间内掌握使用SPSS软件分析问卷数据的方法并完成高质量的问卷数据分析报告。 使用SPSS软件分析调查问卷数据常见于各类学术研究、论文写作、企业市场调研和各类
本书介绍了柴油发电机组的分类、组成和工作原理,分析了柴油发电机组的功率标定和技术指标, 重点讨论了不同性质负载对柴油发电机组带载能力的影响,详细介绍了柴油发电机组供电方案的电源架 构和运行方式以及柴油发电机组的运维保养方法。此外,还介绍了机房安装的柴油发电机组和集装箱式 柴油发电机组的设计、安装的相关知识。 本书力求理论性和实践性相结合,书中所列的柴油发电机系统的供电方案及运维保养方法对当前主 流的数据中心柴油发电机系统普遍适用。本书是数据中心柴油发电机系统运维工作流程的指导性教材, 相信阅读本书一定会对数据中心柴油发电机系统运维管理从业人员大有裨益。
教材系统地介绍文本数据挖掘的相关概念,利用Python作为工具进行相关试验,其内容主要包括:文本挖掘产生的背景及发展;文本挖掘的概念、文本模型表示、文本内容的预处理,包括分词、去停用词以及特征抽取;文本相似度的概念等。介绍文本分类的概念及常用方法,如KNN算法、SVM算法等,并对分类结果进行评价;在介绍文本聚类聚类的概念时是,同样介绍聚类常用算法,如K均值算法、层次聚类法、密度聚类法等,作为有文本分类、文本聚类的应用,*后给出了信息抽取、社会网络中的实体关系抽取和事件抽取。
数据建模指的是对现实世界各类数据的抽象组织,确定数据库需管辖的范围、数据的组织形式等直至转化成现实的数据库。而数据模型是构建应用系统的核心,是尽可能精准地表示业务运转的概念性框架。本书通过平实的语言,对数据模型及建模过程进行了深入浅出的介绍。全书内容分为5个部分,对数据建模简介、数据模型要素,概念、逻辑和物理数据模型、数据模型质量以及数据建模的进阶内容等方面进行讲解,全面细致地为读者解答与数据建模相关的知识点和疑问。除此之外,本书的zui后还对各类专业术语进行了细致的解释,方便读者参考。本书是一本经典的数据建模指南,非常适合对数据建模感兴趣的读者以及从事数据科学等相关工作的专业人士参考阅读。
本书以项目为主线,以基于工作过程的任务驱动为导向,从职业岗位需求出发,以职业能力培养为重点,充分体现现代职业教育特色。本书将数据库应用过程中的工作任务归纳为典型案例,再将其依据学习目标进行分解、序化、重构,形成若干个项目,建立了以完成工作任务为主线的教学内容体系。全书内容围绕 学生成绩管理系统 这个具体案例展开,分别介绍了数据库设计、安装MySQL数据库管理系统、创建与管理数据库、创建与管理数据表、更新数据表数据、查询数据、创建与管理索引和视图、创建与管理存储过程、存储函数和触发器的应用、用户安全性管理和数据备份与还原11个项目。本书适用性强,强调实践、实训等教学环节,同时提供配套的数字化教学资源。 本书可以作为高职院校计算机相关专业的教材,也可以作为数据库应用和管理人员的参考书,以及
本书系统讲述数据仓库的基本概念、基本原理以及建立数据仓库的方法和过程。主要内容包括:决策支持系统的发展、数据仓库环境结构、数据仓库设计、数据仓库粒度划分、数据仓库技术、分布式数据仓库、ElS系统和数据仓库的关系,外部和非结构化数据与数据仓库的关系、数据装载问题、数据仓库与Web、ERP与数据仓库以及数据仓库设计的复查要目。 本书是数据仓库之父撰写的关于数据仓库的 权威著作,既可作为相关专业的研究生教材,也是数据仓库的研究、开发和管理人员的指南。
内容介绍 本书从业务、数据、运营3个维度为电商的经营和决策提供了科学的方法论,是一部电商运营真经,真正做到了“业务中有数据,数据中有运营”。作者是资深的电商行业专家,从事电商数据分析与数据化运营10余年,本书是他在多个知名电商品牌操盘多个千万级项目的经验总结。 为了增强本书的趣味性和读者的角色代入感,本书采用了纪实和叙事的写作手法,书中虚拟了3个核心人物: ?Alex:临危受命、勇挑重担、运筹帷幄的BI部门经理(资深数据分析师)。 ?叶子:有电商行业从业经验但是不懂数据分析的业务员。 ?大白:从其他行业转型到电商行业的数据分析师。 全书有两条主线: ?暗线:叶子和大白在Alex的指导和帮助下成长为“精业务、精数据、精运营”的“三精”数据分析师的经历,这对数据分析师的职业规划和成长有重要借鉴意义。 ?明线:Alex将
数据湖仓是一个现代化的开放式架构,拥有当今热门的开源数据技术的广度和灵活性。本书从初学者的角度出发,通过对数据湖仓重要概念的剖析,对数据湖仓的相关知识进行深入浅出的讲解。全书共18章,对数据湖仓的基础知识、数据工程、业务价值、数据集成等方面进行深入探讨,同时展望数据架构的演化趋势,使读者能够领会数据湖仓的精髓,最终轻松、全面地管理数据湖仓项目。 本书适合数据架构师、业务人员和系统开发人员,以及对数据管理、数据分析感兴趣的读者阅读。
本书从新时代商业环境出发,紧随市场热点,如分布式自治组织(distributed autonomous organization,DAO)、非同质化通证(non-fungible token,NFT)、元宇宙、Web 3.0 、资产 数字化、反垄断、要素市场化配置等,以企业数字化转型为核心,以区块链等数字化技术 为基本点,以场景为基本面,勾勒了数字化时代分布式商业演化的新趋势,以及其对企业 经营管理的影响,提出了数字化时代企业数字化转型的新策略和分布式经营管理的低成 本、高效率发展方案。 本书全面分析了分布式商业产生的背景及其本质内涵,认为分布式商业是未来商业演 化的必然趋势。分布式商业生态战略不但是未来企业生存的基本战略,而且是元宇宙商业 生态建设的底层逻辑,并将Web 3.0 、DAO、NFT、元宇宙等新兴事物融入分布式商业生 态体系中,深度解读了数字化时代的新商业逻辑和战略思维。同
本书以信息交互设计为研究对象,思考在设计学视野下的信息交互设计理论本体并进行 四维一体 的模型建构,比较系统的梳理信息交互设计的发展历程,并着重对发展趋势进行展望。本书以信息交互设计为研究目标进行了系统性、逻辑性的设计理论研究,力求综合、深刻地把握与探索信息交互设计的本体与趋势,并对今后的信息交互设计实践活动提供一定参考与启示。
MySQL是世界上颇受欢迎的数据库管理系统。本书从简单的数据检索开始,逐步深入讲解一些复杂的内容,包括子查询、连接的使用、全文搜索、存储过程、游标、触发器、数据库维护,等等。本书重点突出、条理清晰,系统而扼要地让你学到应该学到的知识,使你在不经意间 功力大增 。第2版基于MySQL 8进行了全面修订。
本书是*1 X职业技能等级证书 智能仓储大数据分析 配套教材。根据证书的等级划分,本套教材分为初、中、高三个等级,总体上每个级别70%的内容是关于运营数据的分析,30%的内容是关于设备数据的分析,每个等级的侧重点及对学生的要求不同。初级教材主要讲授智能仓储运营和设备的基本数据分析方法,从入库、存储、拣货、分货到设备的性能、可靠性等依次展开,要求学习者掌握描述性统计的基本方法,具备SQL、Excel与数据分析相关的基本技能,能够按照企业的要求完成数据采集与处理、监控与汇报等工作。 教材采用活页式设计,以工作任务单元为基本形式,以物流业务流程的开展为主线,从企业真实用人需求出发,立足岗位技能的真实需要,为培养物流类专业技术人才量身定制一套完整的大数据分析知识体系。 本教材适用于中高职、职业技术型大学、应用
本书是为广大数据分析师量身定制的入门读物,它旨在帮助读者站在大数据时代的制高点。数据分析处于统计学、计算机信息科学、运筹学、数据库等多个领域的交叉地带,大数据时代的到来大大丰富了数据分析的内涵,数据分析师的职责与以往相比发生了巨大的改变。本书全面介绍了经典数据分析、模式识别、机器学习、深度学习、数据挖掘、商务智能等多个领域的数据分析算法,将大数据时代的数据分析热点技术一网打尽。本书为每个数据分析算法都搭配了一个经典案例,并按照由易到难的原则构建知识框架,充分照顾了不同水平读者的阅读习惯。通过阅读本书,读者将对大数据时代下的数据分析有一个全面的认识。无论是入门级的数据分析员还是有一定基础的数据分析师,都能通过本书完善、加深对数据分析的认识。
本书是*1 X职业技能等级证书 智能仓储大数据分析 配套教材。根据证书的等级划 分,本套教材分为初、中、高三个等级,总体上每个级别70%的内容是关于运营数据的分析,30%的内容是关于设备数据的分析,每个等级的侧重点及对学生的要求不同。中级教材,在初级教材的基础上,要求学习者能够对智能仓储作业及运营的相关数据开展深入挖掘与分析,掌握推断统计的基本内容,具备初步的SQL与Python等与数据分析相关的编程语言应用能力,可以围绕业务完成较为全面、系统的大数据分析工作。 教材采用活页式设计,以工作任务单元为基本形式,以物流业务流程的开展为主线,从企业真实用人需求出发,立足岗位技能的真实需要,为培养物流类专业技术人才量身定制一套完整的大数据分析知识体系。 本教材适用于中高职、职业技术型大学、应用型本科院校的学生、教
在数据湖仓的所有新增要素中,排名的就是可以利于数据分析和机器学习所用的分析基础设施。分析基础设施包括一众大家广为熟悉的东西,当然也包括一些可能对大家还有些陌生或略带新鲜感的概念。比如包括:元数据、数据血缘、 数据体量的度量 、数据创建的历史记录、数据转换描述。 数据湖仓的第二个新增要素,是识别和使用通用连接器。通用连接器允许合并和比较所有不同来源的数据。如果没有通用连接器,就很难(实际上是几乎不可能)将数据湖仓中的不同数据关联起来。但有了这个中西,就可以关联任何类型的数据。 使用数据湖仓,就有可能实现以往任何其它方式都不可行或不可能实现的某种程度的数据分析和机器学习。 但与其它架构一样,我们需要理解数据湖仓的架构以及它的能力,以便于我们基于这种架构创建数据分析蓝图和开展数据分析规
《Access数据库创建、使用与管理从新手到高手》详细介绍了使用Access创建和设计数据库的方法和技巧,以及Access数据库在实际中的应用。《Access数据库创建、使用与管理从新手到高手》各章的先后顺序以数据库系统的创建和设计流程进行组织,有助于读者梳理Access知识体系,便于读者学习和理解。《Access数据库创建、使用与管理从新手到高手》包含大量示例,示例文件包括操作前的原始文件和操作后的结果文件,既便于读者上机练习,又方便读者在练习后进行效果对比,从而快速掌握Access的操作方法和技巧。 《Access数据库创建、使用与管理从新手到高手》共15章,内容主要包括Access数据库的基本概念、数据库的基本设计流程、Access的界面结构和常用设置、创建与管理数据库和表、在表中添加和编辑字段、设置字段的数据类型和属性、设置数据的显示方式、设置数据
部分(第1~4章)为基础和背景部分,主要介绍数据分析挖掘和数据化运营的相关背景、数据化运营中“协调配合”的本质,以及实践中常见分析项目类型的介绍。第二部分(第6~13章)是数据分析挖掘中的具体技巧和案例分享部分,主要介绍实践中常见的分析挖掘技术的实用技巧,并对大量的实践案例进行了全程分享展示。第三部分(第5章,第14~19章)是有关数据分析师的责任、意识、思维的培养和提升的总结和探索,以及一些有效的项目质控制度和经典的方法论介绍。