阅读本书可以学习使用Python对数据集进行操作、处理、清洗和规整。第3版针对Python3.10和pandas1.4进行了更新,并通过实操讲解和实际案例向读者展示了如何高效地解决一系列数据分析问题。读者将在阅读过程中学习新版本的pandas、NumPy、IPython和Jupyter。 本书作者Wes McKinney是Python pandas项目的创始人。本书对Python数据科学工具的介绍既贴近实战又内容新颗,非常适合刚开始学习Python的数据分析师或刚开始学习数据科学和科学计算的Python程序员阅读。读者可以从GitHub获取数据文件和相关资料。 学完本书,你将能够: ·使用Jupyter notebook和IPython shell进行探索性计算。 ·掌握NumPy的基础功能和高级功能。 ·掌握pandas库中的数据分析工具。 ·使用灵活的工具对数据进行加载、清洗、转换、合并和重塑。 ·使用matplotlib进行信息可视化。 ·使用pandas的groupBy功能对数据集进行切片、切
本书根据PL/SQL的新版本进行了全面更新,涵盖从基础语法、程序控制到最新的优化和调优增强等方面的知识,通过真实的实验、大量的示例讲解了PL/SQL技能,是一本逐步分解的、详尽的PL/SQL编程教程。读者可以按照本书的步骤一步一步地完成每一个关键任务,掌握Oracle 21c PL/SQL编程技术,深度探索PL/SQL编程技术及最佳实践。本书既适合新手数据库开发人员和DBA阅读,也适合有一定经验的从业人员阅读。
Python是一种面向对象的脚本语言,其代码简洁优美,类库丰富,开发效率也很高,得到越来越多开发者的喜爱,广泛应用于Web开发、网络编程、爬虫开发、自动化运维、云计算、人工智能、科学计算等领域。预测技术在当今智能分析及其应用领域中发挥着重要作用,也是大数据时代的核心价值所在。随着AI技术的进一步深化,预测技术将更好地支撑复杂场景下的预测需求,其商业价值不言而喻。基于Python来做预测,不仅能够在业务上快速落地,还让代码维护更加方便。对预测原理的深度剖析和算法的细致解读,是本书的一大亮点。本书共分为3篇。第1篇介绍预测基础,主要包括预测概念理解、预测方法论、分析方法、特征技术、模型优化及评价,读者通过这部分内容的学习,可以掌握预测的基本步骤和方法思路。第2篇介绍预测算法,该部分包含多元回归分析、复杂
《企业级数据架构:核心要素、架构模型、数据管理与平台搭建》由李杨著
本书详细介绍了Oracle、MySQL、PostgreSQL、SQL Server、DB2等各种关系数据库的SQL查询技巧和一些基础的SQL查询语句,并且通过短小精悍的实例,不仅讲解了如何插入、更新和删除数据,还介绍了如何检索记录、为查询结果排序、同时操作多张数据库表、查询元数据、处理涉及字符串和数值的操作、根据时间数据和日期数据进行运算、执行层次查询和区间查询等。随着多种SQL实现大量采用窗口函数,本书第2版针对相关实例做了优化,还新增了为数据科学家和算法工程师量身定制的实例。本书适合数据分析师、数据库管理员以及与SQL打交道的数据科学家和算法工程师阅读。
本书分为以下几个主要部分:第1-3章介绍方法和技术。在这些章节中,我们描述了一种性能调优方法。还提供了一些关于MongoDB架构和MongoDB提供的用于调查、监控和诊断MongoDB性能的工具的背景知识。第4章和第5章介绍应用程序和数据库设计。第6-10章介绍应用程序代码的优化。第11-14章讨论MongoDB服务器及其运行硬件的优化。
商业分析有用吗?当然有用!商业分析是行走职场、创业启航的一项推荐技能。作者结合自己多年的工作经验,用生动的语言介绍如何用数据分析解决商业问题。本书分为6篇,共17章,其中第1篇是概念篇,讲述商业分析的基本概念;第2篇是基础篇,讲述如何用基础的分析方法评估企业经营状况;第3篇是进阶篇,讲述如何构建分析体系解决较复杂的问题;第4篇是高阶篇,讲述如何应对复杂的商业难题;第5篇是基础实践篇,通过案例讲述如何解决更复杂的商业问题;第6篇是高阶实践篇,通过案例讲述如何解决商业分析中的疑难杂症。本书的讲解思路是层层递进的,从简单场景到复杂场景,从基础的方法到复杂的方法。因此,无论读者是否有数据分析基础和经验,都建议从头开始阅读,这样可以一步步提升认知,更快地掌握商业分析的方法。
在大数据时代,我们并不缺少数据,缺少的是利用数据分析的思维和工具去解决实际问题的能力。数据化分析是运用恰当的方法和工具,对数据进行科学、有效的分析,从而提出有理有据、具有可操作性的建议,以解决现实中的难题。本书主要介绍了数据分析的9 种思维、7 种工具、学习方法、基本方法、展现方法、制作数据分析报告的方法,以及数据分析的思维模型。本书适合所有对数据分析感兴趣的读者阅读,特别是在工作或生活中需要经常跟数据接触的人,如数据分析师、产品经理、运营人员、管理人员、财务人员等。
本书根据PL/SQL的新版本进行了全面更新,涵盖从基础语法、程序控制到近期新的优化和调优增强等方面的知识,通过真实的实验、大量的示例讲解了PL/SQL技能,是一本逐步分解的、详尽的PL/SQL编程教程。读者可以按照本书的步骤一步一步地完成每一个关键任务,掌握Oracle 21c PL/SQL编程技术,深度探索PL/SQL编程技术及很好实践。本书既适合新手数据库开发人员和DBA阅读,也适合有一定经验的从业人员阅读。
本书深入探讨了大数据技术的核心概念和实际应用。从大数据的基础架构Hadoop开始,逐步解析了分布式协调服务Zookeeper、数据仓库Hive、面向列的数据库HBase等关键技术。此外,还介绍了数据迁移工具Sqoop、数据采集工具Flume、发布订阅消息系统Kafka等实用工具。本书还深入讲解了数据处理分析引擎Spark、全文搜索引擎Elasticsearch及分布式处理引擎Flink的工作原理和应用实例。最后,通过电商推荐系统实战和Flink实现电商用户行为分析两个案例,展示了大数据技术在实际业务中的应用。本书附带全书实例源代码、电子版本教程(下载方式见封底),以及可扫码观看的长达13个小时的部分实例操作视频,帮助读者更深入了解大数据技术的具体内容,非常适合对大数据技术感兴趣的读者,尤其是想要深入了解大数据技术原理和应用的开发者和管理者阅读。
这是一本从OLAP核心概念出发,以Presto为例,从整体执行流程到不同SQL的执行原理,完整呈现OLAP查询的核心流程和OLAP引擎设计思路,并指导读者形成OLAP引擎设计解决方案的专业技术工具书。本书不仅面向初级读者介绍了OLAP查询的基本原理和Presto使用方法,还从源码级剖析了OLAP引擎核心原理,包括SQL查询解析器、优化器、调度器、执行器等核心组件,并将内容扩展到OLAP引擎的常见高性能优化方案上。全书由浅入深,图文并茂,把晦涩难懂的内容讲解得透彻易懂。本书分为6篇,包括14章。第一篇(第1章和第2章)总体介绍业界常见的OLAP引擎并分析其优劣,讨论OLAP引擎的技术发展趋势及选型方法,介绍Presto背景知识及其使用方法、技巧。第二篇(第3章和第4章)串讲OLAP查询执行的整个过程,并概要性介绍查询解析器、优化器、调度器、执行器等核心模块的工作原理,
本书介绍了数字孪生的概念和流程,帮助读者了解当前数字化的环境和趋势,并快速建立MicroStation直觉式绘图环境。本书分为13章,从数字孪生基础概念讲到数字孪生生态环境,然后进一步讲述如何使用MircoStation。内容包括使用方法、工作环境、空间定位、对象创建与修改、视图、三维操作、引用、单元对象、图纸输出、注释对象、打印输出。本书不仅适合作为广大学习、使用MicroStation软件人员的参考书,而且也可作为建筑行业的专业人员、研究人员、软件开发工程师、BIM爱好者及高校师生的常备参考书。
本书紧密结合当前边缘计算领域近期新的发展趋势与研究成果,本着务实具体、详略得当、启发创新的指导思想,系统、全面地介绍了边缘计算的原理与应用,包括基本概念、架构原理、核心技术、主要研究方向与挑战,以及多个应用的近期新研究进展。撰写本书时最艰难的是选择从哪些应用视角来讲述边缘计算。最终,我们选择了计算卸载、服务部署、视频分析、模型推断、联邦学习等当下应用最为广泛的若干应用进行了阐述。
【为宏观掌握Oracle基础(第1~3章)】,介绍了进程管理、内存管理及存储等基础知识,并且讲解了常用Linux操作系统性能工具的使用及结果分析方法,旨在帮助读者了从宏观视角掌握Oracle数据库体系架构和进程组织方案。【微观理解Oracle原理(第4~8章)】,围绕Oracle内部运行原理展开讲解。首先,在Oracle数据结构的基础上讨论日志和回滚。其次,引入了排队论和排队系统中的概念,对比法讲解了Oracle的数据缓冲区高速缓存和共享池设计思想及运行原理。【串联Oracle运行流程(第9~11章)】,结合实践案例将从提交SQL至结果返回的整个过程串起来,首先总结归纳了Oracle算法和数据结构的重要知识点,打通了Oracle原理与数据结构之间的桥梁。其次,通过典型案例讲解AWR报告,让读者能够了解完整的Oracle诊断思路。再次,介绍了集群技术、OracleRAC及其日志结构。然后,对Orac
这是一本能从业务、方法、场景3个维度帮助读者使用AI技术提升数据分析和数据化运营能力的著作。用扎实的理论框架、丰富的实践案例、实用的操作技巧,全面展示了如何用AI延伸业务分析广度、拓展业务分析深度、优化业务分析效能,从而达到帮助企业用智能的数据化运营实现业务持续增长的目的。 阅读并实践本书,你将有以下收获: (1)理解并掌握AI辅助数据分析的思路,以及应该具备的AI能力、方法和工具。 (2)系统掌握AI在数据分析报告中的创新应用,包括思维导图生成、报告材料整理、核心内容撰写以及报告试讲和优化等。 (3)掌握AI在市场分析和行业分析中的应用,包括数据采集、宏观分析、行业与市场概况分析、市场细分与目标市场定位、市场发展趋势与市场风险分析。 (4)掌握AI在竞争分析中的应用,包括收集竞争分析报告与数据、竞品调研
全书共9章,分为三部分。第一部分(第1~3章)讲解存储引擎的全貌,涉及存储引擎中高频使用的数据结构、存储介质等,为深入学习后面的内容做铺垫。第二部分(第4~6章)介绍基于B+树的存储引擎,重点介绍为什么选择B+树作为存储引擎索引结构、B+树存储引擎解决哪些问题以及如何解决,并以BoltDB存储引擎项目为例来讲解核心原理与实现细节。第三部分(第7~9章)介绍基于LSM派系的存储引擎,重点介绍LSM Tree中各组件的功能及作用,最后剖析了LevelDB项目的核心原理与实现细节。
本书由国内资深MySQL专家亲自执笔,国内外多位数据库专家联袂推荐。作为国内专享一本关于InnoDB的专著,本书的第1版广受好评,第2版不仅针对近期新的MySQL 5.6对相关内容进行了全面的补充,还根据广大读者的反馈意见对第1版中存在的不足进行了完善,全书大约重写了50%的内容。本书从源代码的角度深度解析了InnoDB的体系结构、实现原理、工作机制,并给出了大量很好实践,能帮助你系统而深入地掌握InnoDB,更重要的是,它能为你设计管理高性能、高可用的数据库系统提供不错的指导。 全书一共10章,首先宏观地介绍了MySQL的体系结构和各种常见的存储引擎以及它们之间的比较;接着以InnoDB的内部实现为切入点,逐一详细讲解了InnoDB存储引擎内部的各个功能模块的实现原理,包括InnoDB存储引擎的体系结构、内存中的数据结构、基于InnoDB存储引擎的表和页的物理存
本书全面深入地探讨了有效数据管理面临的挑战、复杂性及其巨大价值;定义了一套数据管理的指导原则,阐述了如何将这些原则应用于不同的数据管理功能领域;提供了企业级数据管理实践的功能框架,涵盖广泛采用的实践、方法、技术、职能、角色、交付成果和衡量标准;确立了数据管理的通用术语体系,成为数据管理专业人员很好实践的基础。本书为数据管理和IT专业人员、企业高管、知识工作者、教育者和相关研究人员提供了数据管理知识体系框架,帮助他们更好地管理数据、优化数字基础设施。
本书以TiDB数据库为基础介绍分布式数据库的运行原理、性能优化和应用场景架构设计。首先,剖析分布式数据库的运行原理与架构;然后,阐述分布式数据库TiDB在表与索引的设计优化、SQL优化、系统级优化方面的方法论,通过融入多个有代表性的案例,帮助读者将方法论对应到生产实践中;最后,梳理场景选型和架构设计过程中读者应该掌握的主要知识点,并对一些分布式数据库的优势场景进行了详细介绍。 本书适合希望了解分布式数据库原理,学习TiDB数据库的开发工程师、数据库管理员和架构师阅读,也可以作为高等学校教师或学生学习分布式数据库的参考教材。