计算广告是一项新兴的研究课题,它涉及大规模搜索和文本分析、信息获取、统计模型、机器学习、分类、优化以及微观经济学等诸多领域的知识。本书从实践出发,系统地介绍计算广告的产品、问题、系统和算法,并且从工业界的视角对这一领域进行具体技术的深入剖析。 本书立足于广告市场的根本问题,从计算广告各个阶段所遇到的市场挑战出发,以广告系统业务形态的需求和变化为主线,依次介绍合约广告系统、竞价广告系统、程序化交易市场等重要课题,并对计算广告涉及的关键技术和算法做深入的探讨。这一版中更是加入了深度学习的基础方法论及其在计算广告中的应用。 无论是互联网公司商业化部门的产品技术人员,还是对个性化系统、大数据变现或交易有兴趣的产品技术人员,传统企业互联网化进程的决策者,传统广告业务的从业者,互联网创
这是一部从技术、流程、管理等多个维度系统讲解华为数据治理和数字化转型的著作。华为是一家超大型企业,华为的数据底座和数据治理方法支撑着华为在全球170多个国家/地区开展多业态、差异化的运营。书中凝聚了大量数据治理和数字化转型方面的有价值的经验、方法论、规范、模型、解决方案和案例,不仅能让读者即学即用,还能让读者了解华为数字化建设的历程。 全书共10章,内容从逻辑上分为四个部分。 第壹部分(第1~3章) 第1章以非数字原生企业在数字化转型方面面临的挑战开篇,介绍了华为在数据治理和数字化转型方面的目标、愿景、蓝图和框架;第2章从企业政策和架构协同的角度,介绍了企业级的数据综合治理体系,理顺了数据与变革、运营、IT之间的协同关系,明确了数据管理的责任主体在业务;第3章详细阐述了不同类型的数据的管理方式
《Power BI商业智能数据分析与可视化》以DAX为核心线索,围绕数据分析和数据可视化,系统全面地介绍了Power BI的核心知识体系。 《Power BI商业智能数据分析与可视化》的主要内容包括数据分析和数据可视化基础知识,Power Query数据获取、转换与加载,Power BI数据模型,DAX基础和进阶知识、DAX的实践案例、DAX驱动数据可视化交互,仪表板开发实践、仪表板多场景应用,以及AI辅助学习等。 《Power BI商业智能数据分析与可视化》体系完整、重点突出、内容新颖翔实、案例贴近实际,适合数据分析师、Power BI分析人员、Excel高级用户,以及想提高数据分析能力的各类人员阅读。
《EViews在数据分析中的应用》结合大量实战案例,全面、系统地介绍EViews软件的基本用法及其在数据分析中的应用。本书每章的最后都提供上机练习题,帮助读者提高动手能力。另外,本书提供配套教学视频,帮助读者高效、直观地学习,还提供教学PPT和大纲,方便相关高校的老师教学。 《EViews在数据分析中的应用》共13章,分为4篇。第1篇 EViews数据分析基础 ,涵盖EViews概述、EViews基本数据分析(单序列)、EViews基本数据分析(序列组)和EViews数据图形化分析;第2篇 EViews经典线性回归模型 ,涵盖经典回归模型和违背经典线性回归模型假设的修正;第3篇 EViews时间序列模型 ,涵盖时间序列模型与预测、带季节效应的时间序列模型、条件异方差模型、向量自回归模型和协整相关模型;第4篇 EViews的其他模型 ,涵盖离散和受限因变量模型,以及混合数据与面板数据分
《Processing程序交互与数据视觉艺术实践》全面而深入地讲解了Processing在数据可视化设计领域的基础编程知识与创作实践技巧。全书共分为8章,内容包括初识数据视觉艺术、代码艺术与视觉创意、生成艺术、动态视觉效果、数据的视觉表达、数据接入与应用、传感器与数据交互,以及GUI交互设计。书中不仅展示了使用Processing处理文本和表格数据的方法、应用网络数据的技巧,而且讲解了通过Arduino传感器、摄像头、麦克风等设备进行数据采集的方式。此外,本书还详细介绍了如何利用鼠标、键盘与图形用户界面(GUI)进行交互协作的方法,旨在帮助读者创作出优秀的数据可视化新媒体作品。 本书可作为高等院校视觉传达设计、信息艺术设计、广告设计、数字媒体、新媒体艺术等专业的教材,也可作为数据信息视觉化设计从业者的参考书。
本书全面介绍车辆轨迹数据的处理、分析与可视化方法,并深入探讨了基于Python的车辆轨迹数 据处理技术,旨在帮助读者快速掌握车辆时空轨迹数据处理的基本方法和编程技巧,同时提供丰富的实际案例和技术解决方案,覆盖了从数据采集到深入分析的完整技术链条,是交通时空大数据领域车辆轨迹数据处理分析的全面指南。 本书内容涵盖从车辆轨迹数据的基本特征、采集原理到预处理、质量分析、可视化,再到高级应用如路网匹配、排放计算、多智能体仿真,以及特定案例分析如电动汽车充电需求识别和无人机航拍轨迹数据分析。 本书适合计算机相关专业的学生、数据分析师、研究人员以及技术开发人员阅读。
本书共8章,立足于能源大数据领域核心业务,介绍了世界及中国的能源格局及能源转型背景,阐述了大数据技术的基本原理及其在能源领域的规划、预测等应用中开展实践情况,系统阐明能源大数据中心建设关键问题,深入讲解碳核算方法学。同时向读者说明了能源大数据在服务于 双碳 管理、政府治理中起到的关键作用,展示了能源大数据领域的实践成果和经验。
《谁说菜鸟不会数据分析》(入门篇)是一本有趣的数据分析书!本书基于通用的Excel工具,加上必知必会的数据分析概念,以小说般通俗易懂的方式讲解。本书基于职场三人行来构建内容,完全按照数据分析工作的完整流程来讲解。全书共8章,依次讲解数据分析必知必会知识、数据分析的结构化思维、数据处理技巧、数据展现的技术、提升图表之美的专业化视角,以及专业分析报告的撰写方法等内容。本书有足够的魅力让你一口气读下去,在无形之中掌握数据分析的技能,提升职场竞争能力。本书能有效帮助职场新人提升职场竞争力,也能帮助市场营销、金融、财务、人力资源管理人员及产品经理解决实际问题,还能帮助从事咨询、研究、分析行业的人士及各级管理人士提高专业水平。
随着TheDataWarehouseToolkit(1996)第1版的出版发行,RalphKimball为整个行业引入了维度建模技术。从此,维度建模成为一种被广泛接受的表达数据仓库和商业智能(DW/BI)系统中数据的方法。该经典书籍被认为是维度建模技术、模式和实践的资源。 该书汇集了到目前为止全面的维度建模技术。 该书采用新的思路和实践对上一版本进行了全面修订,给出了设计维度模型的全面指南,既适合数据仓库新手,也适合经验丰富的专业人员。 该书涉及的所有技术都基于作者实际从事DW/BI的设计经验,通过实际案例加以描述。 该书主要内容: 实用设计技术 有关维度和事实表的基本和高级技术。 14个案例研究,涉及零售业、电子商务、客户关系管理、采购、库存、订单管理、会计、人力资源、金融服务、医疗卫生、保险、教育、电信和运输等。
本书系统地介绍过程挖掘的原理、方法、技术及其在教育领域的应用,重点介绍基于Petri net 的形式化挖掘技术和基于语义的挖掘技术,并举一个完整的挖掘大学校园学生行为特征的 案例。本书既有完整的理论框架又有专门的教育领域实践应用,可供计算机、大数据、人工智 能等相关专业领域的学生和研究人员参考。
《向量数据库:大模型驱动的智能检索与应用》系统地介绍向量数据库的原理、技术实现及其应用,重点分析传统数据库在处理高维向量数据时的局限性,并提供相应的解决方案。《向量数据库:大模型驱动的智能检索与应用》分为4个部分,共13章,内容涵盖从理论基础到技术实践的多个方面,详细讨论高维向量表示中的信息丢失、嵌入空间误差和维度诅咒等问题,结合FAISS和Milvus等主流开源工具,深入剖析向量数据库的索引机制、搜索算法和优化策略。通过实际案例,展示向量数据库在推荐系统、行为分析、智能诊断、语义搜索等领域的应用,并特别强调企业级语义搜索系统的开发与部署经验。 《向量数据库:大模型驱动的智能检索与应用》不仅提供深度的理论指导,还通过丰富的案例帮助读者掌握如何构建高效的向量搜索引擎,适合从事搜索引擎与推荐系统开发的
K线图已经成为金融交易平台和图表程序的关键组成部分。使用这些图表,交易者们从中学习基础模式,用于解释价格走势历史,并预测未来市场。这本详细的指南向投资组合经理、量化分析师、策略师和分析师展示了如何使用Python来识别、扫描K线图模式,根据模式进行交易,并回测K线图模式的盈利能力。 金融作家、交易顾问和机构市场策略师Sofien Kaabar在本书中展示了如何创建K线图扫描器和指标,通过这些指标,我们可以比较不同模式的盈利能力。通过这本实践指南,你还将探索一种类似K线图的新型图表系统,以及从未介绍过的新模式。 通过这本书,你将学会: 创建并理解经典和现代K线图模式所需的条件。 学习这些模式背后的市场心理。 使用一个框架来学习如何进行交易策略的回测。 探索不同的图表系统并理解它们的局限性 在Python中导入不同时间框架的OHLC
《问卷数据分析:破解SPSS软件的六类分析思路(第2版)》系统介绍了使用SPSS软件进行问卷数据分析的思路及方法,分为四部分,分别是问卷设计、六类问卷分析思路、数据分析方法在SPSS软件中的操作和答疑解惑。其中问卷设计部分适用于所有读者,建议读者在设计问卷前详细阅读这部分内容。读者可以结合实际情况选读六类问卷分析思路部分的内容。数据分析方法在SPSS软件中的操作部分详细讲解了各类数据分析方法在SPSS软件中的操作细节,并且对输出结果进行说明。答疑解惑部分罗列了使用各类分析方法时常见的疑难杂症,并且提供了解决方法。本书侧重于问卷分析的应用性,力求让读者在*短的时间内掌握使用SPSS软件分析问卷数据的方法并完成高质量的问卷数据分析报告。 使用SPSS软件分析调查问卷数据常见于各类学术研究、论文写作、企业市场调研和各类
数据、模型与决策是应用数学建模和计算机技术帮助决策者解决问题。作为国外一本优秀的数据、模型与决策的教材,本书具有以下特色: 1.对枯燥、复杂和技术化的数学问题用简明易懂的语言予以解释,兼顾严谨的数理逻辑。 2.突出建模分析框架和基础逻辑的讲授和训练,在某种程度上实现了艺术与科学的有机融合。 3.课后习题丰富,并配有网络题库,供自学者加强训练,及时检查对理论模型及其求解方法的掌握程度。 第12版把修订重点放在企业和组织的*技术发展上,增加了商业分析(第1章)、项目风险(第8章)以及数据挖掘(第14章)等内容。
XGBoost是一种经过行业验证的开源软件库,为快速高效地处理数十亿数据点提供了梯度提升框架。首先,本书在介绍机器学习和XGBoost在scikit-learn中的应用后,逐步深入梯度提升背后的理论知识。读者将学习决策树,并分析在机器学习环境中的装袋技术,同时学习拓展到XGBoost的超参数;并将从零开始构建梯度提升模型,将梯度提升扩展到大数据领域,同时通过计时器的使用了解速度限制。接着,本书重点探讨XGBoost的细节,着重于速度提升和通过数学推导导出参数。通过详细案例研究,读者将练习使用scikit-learn及原始的Python API构建和微调XGBoost分类器与回归器;并学习如何利用XGBoost的超参数来提高评分、纠正缺失值、缩放不平衡数据集,并微调备选基学习器。最后,读者将学习应用高级XGBoost技术,如构建非相关的集成模型、堆叠模型,并使用稀疏矩阵、定制转换器和
作为一本 Power Query 初级入门读本,《Power Query 智能化数据汇总与分析》不深入介绍 M 函数,而是结合大量的实际案例,利用 Power Query 可视化的操作向导,来解决实际工作中烦琐的数据整理、汇总和分析问题,让读者在短时间内,能够对 Power Query 有一个较为全面的了解和掌握,并能迅速提升数据处理和统计分析效率。 《Power Query 智能化数据汇总与分析》适合具有 Excel 基础知识并经常处理大量数据的各类人员阅读,也可作为大专院校经济类本科生、研究生和 MBA 学员的教材或参考书。
数字技术为企业的管理方式带来颠覆性变革,我们正在经历从依赖企业管理者解读数据并做出业务决策,到由算法通过计算数据做出分析和判断,然后自动指挥业务活动的转变。作为企业管理者,需要思考如何顺应时代趋势,利用数字技术,实现企业管理方式升级,提升管理效率,降低管理费用,提高企业竞争力。撰写本书的主要目的是,帮助企业体系化地推进数字化管理升级。本书的主要内容包括数字技术驱动企业管理方式升级、企业数字化管理体系的四条线、企业数字化管理体系建设七步法、企业数字化管理体系建设实战、企业数字化管理体系建设中的瓶颈与难点、企业数字化管理体系建设的技术架构,以及未来数字智能技术展望。
本书通过对多个实例的演示与讲解,详细介绍了Excel的*功能组件Power Query在数据查询与数据转换方面的主要功能。全书共分为8章,主要包括Power Query编辑器的基本功能,常见数据类型的查询与导入,对原始数据进行合并、拆分、计算、转换等数据整理操作,Power Query中M公式的编写方法等。 本书语言风趣,专注于具体的应用场景,而不拘泥于功能本身,图示清晰、可操作性强且便于查阅,能有效帮助读者提高Excel的使用水平,提升工作效率。 本书主要面向Excel的初、中级用户以及IT技术人员,对于Excel高级用户也具有一定的参考价值。
本书以实际案例和具体应用为驱动,以培养科研统计思维为目标,借助 SPSS,系统地讲授了差异显著性检验、方差分析、相关性分析、回归分析、聚类分析、主成分分析,以及结构方程模型的概念、原理和具体使用。 全书共 8 章。第 1 章系统地讨论了科研统计思维及统计分析的相关概念,并以量化类典型论文为例抛出统计思维的核心问题。第 2 章介绍了数据的规范化及预处理,重点讲解了基于数据做论证所必需的前置操作。第 3 章介绍了统计描述及数据加工。第 4 章讲解了差异显著性检验。第 5 章介绍了方差分析及其高级应用,阐述了单因素方差分析、多因素方差分析、协方差分析、多因变量方差分析等内容,以及事后检验、均值边际图等高级应用的相关知识。第 6 章介绍了关联性分析技术和回归分析。第 7 章讲解了聚类分析技术。第 8 章介绍了因子分析与降维
本书的主要内容有:熟悉Spark的编程模型和生态系统。学习数据科学的一般方法。检查分析大型公共数据集执行步骤的完整性。发现哪些机器学习工具对特定问题有帮助。探索可适应多种用途的代码。
数据是数字经济的关键生产要素与核心资源。数据要素市场的培育是一个动态演化和持续迭代的过程,而信任的建立是市场建设的关键一步。本书通过“信任”这一视角,对数据流通进行全方位的解读,对中国数据要素市场的建设实践进行回顾与展望。基于“TIME”分析框架,对数据可信流通技术、数据流通机构、可信的数据流通模式以及促进数据可信流通的治理方案进行全面系统的介绍。本书旨在为数据要素市场参与者、数字经济从业者、数据治理人员以及关注数据流通交易的读者提供实用的参考,帮助他们理解数据流通的可行模式,破解数据要素市场发展难题,充分释放数据要素流通潜力,赋能实体经济高质量发展。
本书共13章,分三个部分:基础篇、实战篇、提高篇。 (1)基础篇(第1~5章),第1章的主要内容是数据挖掘概述;第2章对本书所用到的数据挖掘建模工具Python语言进行了简明扼要的说明;第3章、第4章、第5章对数据挖掘的建模过程,包括数据探索、数据预处理及挖掘建模的常用算法与原理进行了介绍。 (2)实战篇(第6~12章),重点对数据挖掘技术在金融、航空、零售、农业、制造和互联网等行业的应用进行了分析。在案例结构组织上,本书是按照先介绍案例背景与挖掘目标,再阐述分析方法与过程,最后完成模型构建的顺序进行的,在建模过程关键环节,穿插程序实现代码。最后通过上机实践,加深数据挖掘技术在案例应用中的理解。 (3)提高篇(第13章),围绕去编程化的TipDM大数据挖掘建模平台,先介绍了平台每个模块的功能,再以航空公司客户价值
Apache ShardingSphere 是一个基于可插拔特性和云原生原则的新开源生态系统,将其用于分布式数据基础设施有助于增强数据库性能。本书首先简要概述数据库管理系统在生产环境中面临的主要挑战和数据库软件的内核概念;然后介绍使用分布式数据库解决方案、弹性伸缩、用户身份认证、SOL授权、全链路监控、数据库网关和 DistSOL的真实示例,全面讲解 ShardingSphere 的架构组件,以及如何利用它们配置和插入现有的基础架构并管理数据和应用;接着介绍生态系统的客户端 ShardingSphere-JDBC 和 ShardingSphere-Proxy,以及它们如何同时或独立地工作以满足实际需求;最后讲解如何定制可插拔架构以定义个性化的用户策略和无缝管理多个配置,并在各种场景下对数据库进行基准测试和性能测试。
编写本书的目的是使读者可以在最z短时间内掌握Excel 数据分析。本书以数据分析的整体流程和知识难易度来安排各章内容及其在全书中的次序,每一章内容都紧密围绕数据分析展开。全书共10 章,每天学习一章,10 天就能学会Excel 中的大多数数据分析工具的用法和技巧。 本书的主要内容包括数据分析的基本概念和流程、Excel 中的数据分析工具的功能和特点、导入外部数据和输入不同类型的数据、修复有问题的数据、设置数据格式、排序、筛选、分类汇总、数据透视表、公式和函数基础知识、提取和格式化文本、汇总和统计数据、计算日期、模拟分析、单变量求解、规划求解、分析工具库、图表的基本概念和基础操作、创建不同类型的图表、导入和刷新数据、使用Power Query 编辑器整理数据、使用Power Pivot 创建数据模型、创建计算列和度量值、销售分析和客户分析等
本书深入地探讨云原生数据仓库的理论知识与技术实践,涵盖数据仓库的发展历程、大数据处理技术、云原生数据仓库的概念与特点,以及云计算时代的数据仓库技术。书中详细介绍云原生数据仓库的架构设计,计算引擎、优化器、存储的关键技术,以及资源管理与调度等知识。同时,本书结合Redshift、Snowflake、BigQuery等典型的云原生数据仓库,以及AnalyticDB等具有代表性的国产数据仓库,介绍大量的实践案例。此外,书中针对云原生数据仓库的资源调度、查询优化、运维管理等方面进行深入的剖析,提供大量的最佳实践和应用场景。