《华为数据之道》 这是一部从技术、流程、管理等多个维度系统讲解华为数据治理和数字化转型的著作。华为是一家超大型企业,华为的数据底座和数据治理方法支撑着华为在全球170多个国家/地区开展多业态、差异化的运营。书中凝聚了大量数据治理和数字化转型方面的有价值的经验、方法论、规范、模型、解决方案和案例,不仅能让读者即学即用,还能让读者了解华为数字化建设的历程。 ============= 《华为数字化转型之道》 本书由华为公司质量与流程IT团队官方出品,从认知、理念、转型框架、规划和落地方法、业务重构、平台构建等多个维度全面总结和阐述了华为自身的数字化转型历程、方法和实践,能为准备开展或正在开展数字化转型的企业提供系统、全面的参考。
本书介绍可以帮助读者处理真实数据分析挑战的概念和技能。它涵盖了概率论、统计推断、线性回归和机器学习等概念。它还帮助读者提升如下技能:R编程、数据清洗、数据可视化、预测算法构建、使用UNIX/Linux shell组织文件、使用Git和GitHub进行版本控制以及可复制的文档准备。全书分为六个部分,分别为R、数据可视化、统计与R、数据清洗、机器学习和生产力工具。
《数据中台:让数据用起来 第2版》 在数字中国这一国家战略的牵引下,数据要素和数字化转型的研究和落地如火如荼。数据中台是企业开展数据要素相关实践和数字化转型的关键基础设施,本书在这样的时代背景下,以帮助企业“管好数据、用好数据”为宗旨,内容围绕数据中台架构与建设方法论、数据中台建设流程和内容、数据中台工程化交付、数据中台行业解决方案4个维度全面、深度展开。 ============== 《华为数据之道 》 这是一部从技术、流程、管理等多个维度系统讲解华为数据治理和数字化转型的著作。华为是一家超大型企业,华为的数据底座和数据治理方法支撑着华为在全球170多个国家/地区开展多业态、差异化的运营。书中凝聚了大量数据治理和数字化转型方面的有价值的经验、方法论、规范、模型、解决方案和案例,不仅能让读者即学即用,还能让
Spark SQL 是 Spark 技术体系中较有影响力的应用(Killer application),也是 SQL-on-Hadoop 解决方案 中举足轻重的产品。《Spark SQL内核剖析》由 11 章构成,从源码层面深入介绍 Spark SQL 内部实现机制,以及在实际业务场 景中的开发实践,其中包括 SQL 编译实现、逻辑计划的生成与优化、物理计划的生成与优化、Aggregatio算子和 Joi算子的实现与执行、Tungste优化技术、生产环境中的一些改造优化经验等。
本书重点介绍数据质量管理与安全管理的理论及应用。首先通过数据管理现况和问题的分析,提出数据质量管理的步必须是将各种来源的数据标准化,具有统一的数据格式和规则。书稿中强调了提高数据质量不仅可提高信息系统的质量,还可提高经营活动的质量。需要制定质量管理计划或执行具体的质量管理活动。定义了数据质量的准确性、一致性、可用性、可达性、及时性、安全性这6个标准以及对应的管理流程,划分了5个能力成熟度的等级,界定了从管理者到执行者等各个质量管理活动和责任。提出多项数据质量管理主要技术和各国实用案例,还进一步在Orange数据库中实践了数据质量诊断流程。书稿后半部针对日益增长的数据库安全性的需求,提出了安全管理系统构建、访问控制,数据伪装等具体可行的技术手段,最后还将数据安全技术推广到大数据的应用场景
本书以了解COBOL语言为基础,通过由浅入深的讲解,循序渐进地介绍了如何使用COBOL语言进行实际开发。同时在讲解的过程中,也穿插了部分IBM大型机的知识及其在实际应用中的操作。
查询优化器是数据库中很重要的模块之一,只有掌握好查询优化的方法且了解查询优化的细节,在对数据库调优的过程中才能有的放矢,否则调优的过程就如无本之木、无源之水,虽上下求索而不得其法。本书揭示了PostgreSQL数据库中查询优化的实现技术细节,首先对子查询提升、外连接消除、表达式预处理、谓词下推、连接顺序交换、等价类推理等逻辑优化方法进行了详细描述,然后结合统计信息、选择率、代价对扫描路径创建、路径搜索方法、连接路径建立、Non-SPJ路径建立、执行计划简化与生成等进行了深度探索,使读者对PostgreSQL数据库的查询优化器有深层次的了解。本书适合数据库内核开发人员及相关领域的研究人员、数据库DBA、高等院校相关专业的本科生或者研究生阅读。
我们能相信统计么? 抛了5次硬币,结果都是正面,抛硬币是否肯定是正面?如何从高层的统计指标看透数据后面的本质?如何在大数据时代获取战略制高点,确定自己的职业发展定位?从一个互联网公司数据分析师的成长经历,为您娓娓道来,数据分析中的奇闻趣事、心得总结、方法技巧与哲学感悟。
《数据建模与DB设计》重点介绍数据建模与数据库设计的理论及应用。从数据模型的发展历程及其必要性引入,基于作者在研究和项目实践中积累的经验,让读者理解数据建模是业务负责人与数据设计者之间沟通的工具,数据模型决定数据处理性能与数据管理便利性。书中首先将数据建模划分为概念建模、逻辑建模、物理建模以及的数据库设计四个阶段,明确了导出实体、设定实体的重要关系、设定键的数据建模流程。为了提高数据整合性和业务流程性能,先后提出了范式化和反范式化过程,在构建理解的数据结构的同时兼顾数据库的访问成本,寻找盈亏平衡点。《数据建模与DB设计》无论对数据分析设计领域的初学者还是实际业务的实践者,都很有启发和指导作用。