本书主要介绍从高维数据中感知、处理、分析和学习低维结构的基本数学原理和高效计算方法,系统地归纳了建模高维空间中低维结构的数学原理,梳理了处理高维数据模型的可扩展高效计算方法,阐明了如何结合领域具体知识或考虑其他非理想因素来正确建模并成功解决真实世界中的应用问题。本书包括基本原理、计算方法和真实应用三个部分:基本原理部分系统地介绍稀疏、低秩和一般低维模型的基本性质和理论结果,计算方法部分介绍解决凸优化和非凸优化问题的有效算法,真实应用部分通过实例演示利用前两部分的知识改进高维数据处理和分析问题的解决方案。本书适合作为计算机科学、数据科学和电气工程专业的高年级本科生和研究生的教材,也适合学习稀疏性、低维结构和高维数据课程的学生参考。
内容简介商业分析有用吗?当然有用!商业分析是行走职场、创业启航的一项技能。 作者结合自己多年的工作经验,用生动的语言介绍如何用数据分析解决商业问题。 本书分为6 篇,共17 章,其中第1 篇是概念篇,讲述商业分析的基本概念;第2 篇是基础篇,讲述如何用基础的分析方法评估企业经营状况;第3 篇是进阶篇,讲述如何构建分析体系解决较复杂的问题;第4 篇是高阶篇,讲述如何应对复杂的商业难题;第5 篇是基础实践篇,通过案例讲述如何解决更复杂的商业问题;第6 篇是高阶实践篇,通过案例讲述如何解决商业分析中的疑难杂症。 本书的讲解思路是层层递进的,从简单场景到复杂场景,从基础的方法到复杂的方法。因此,无论读者是否有数据分析基础和经验,都建议从头开始阅读,这样可以一步步提升认知,更快地掌握商业分析的方法。
《深入浅出数据分析》以类似 章回小说 的活泼形式,生动地向读者展现优秀的数据分析人员应知应会的技术:数据分析基本步骤、实验方法、化方法、假设检验方法、贝叶斯统计方法、主观概率法、启发法、直方图法、回归法、误差处理、关系数据库、数据整理技巧;正文之后,意犹未尽地以三篇附录介绍数据分析十大要诀、R工具及ToolPak工具,在充分展现目标知识以外,为读者搭建了走向深入研究的桥梁。 本书通过精心设计的实践场景,让读者不由自主地代入角色当中,真正在体验中学习、思考,将数据分析的要点融化于心,自如地应用在工作和生活中。
《数据库系统概念》是数据库系统方面的经典教材之一,其内容由浅入深,既包含数据库系统基本概念,又反映数据库技术新进展。它被国际上许多大学所采用,包括斯坦福大学、耶鲁大学、得克萨斯大学、康奈尔大学、伊利诺伊大学等。
本书是一本全面关注企业数据标准化方面的工具书,主要分为5 篇。 第1 篇介绍了数据标准化是数据治理的基础,包括数据标准化与数据治理的关系,以及数据标准化主要内容、本书阅读导引。 第2 篇介绍了数据标准化框架体系,包括架构类数据标准、对象类数据标准、基础类数据标准。 第3 篇介绍了数据标准化实施流程与方法,包括建立数据标准化保障机制、现状分析及评估、技术平台和工具、数据标准化关键域实施。 第4 篇介绍了数据标准化评价,包括数据标准化评价方法、数据标准成熟度评价、数据标准化成熟度评价流程。 第5 篇介绍了数据标准化案例,包括油气行业、多元化集团、装备制造行业、核电行业、汽车行业、金融行业、政务行业、互联网行业等行业的数据治理案例,为读者提供了专业、丰富、可信的数据治理实施范例。 本书是工业大数据应
本书是一本全面关注工业企业数据治理方面的工具书,主要内容分为概述篇、体系篇、工具篇、实施篇及案例篇。其中概述篇主要介绍工业企业数据治理的基础概念、主流数据治理标准及框架、数据治理的发展趋势等;体系篇主要介绍数据管控、数据战略、数据架构、主数据管理等的基本原理与管理体系;工具篇主要介绍主数据管理工具、数据模型管理工具、数据资产运营工具等;实施篇主要介绍具体实施策略及路径选择、顶层架构规划与设计、数据资产运营实施等;案例篇主要介绍电力、能源化工、钢铁、制造、战略投资等行业的数据治理案例,为读者提供专业、丰富、可信的数据治理实施范例。本书是工业大数据应用技术国家工程实验室多年潜心研究的重要科研成果的总结和凝聚,既具有理论高度,也具备面向中国工业企业的可实操性。参与本书编著的作者均
互联网的出现使人们第一次能够访问大量的数据。比如,社交网络Facebook中的友谊图和互联网网站之间的链接图。这两幅图都包含超过10亿个节点,代表巨大的数据集。如果要使用这些数据集,就必须对其进行处理和分析。然而,仅仅是它们的大小就使得这种处理非常具有挑战性。特别是,为处理中等规模的数据集而开发的经典算法和技术,在面对如此大的数据集时往往需要超出常规的时间和空间。此外,在某些情况下,存储整个数据集甚至是不可行的,因此,必须在数据集的各个部分对其进行处理,然后很快丢弃每部分。 上述挑战推动了加工处理 大数据 (海量数据)的新工具和新技术的发展。在本书中,我们对这项工作采取了计算机科学理论的观点。特别是,我们将研究旨在捕捉 大数据 计算带来的挑战的计算模型,以及为应对这些挑战而开发的实际解决方案的特性。我们将通过调查
本书探索工业大数据的 工程方法体系 并介绍了其中的关键技术,提出了多领域的工业物理对象建模方法和查询技术。全书共10章,第1章讨论了工业大数据的内涵与特点,并给出了工业大数据工程的三个要素,即数据资源、数据分析和数据应用;第2~4章提出了领域模型驱动的数据资源的建模技术,并给出了工业大系统技术与建设方法;第5、6章讨论了敏捷工业大数据分析与运维方法,并阐述了背后的分析软件技术;第7章讨论了用户驱动的数据应用的低代码开发技术;第8~10章用风电、水电、煤矿综采三个行业,展示了工业大数据工程方法的应用过程。
● 如何使用R语言进行高级数据分析,涉及的技术包括广义线性模型、广义可加模型、混合效应模型、机器学习、并行处理 ● 如何使用R语言的数据可视化技术实现回归,如线性回归和高级回归,并了解回归样条和可加模型 ● 如何使用R语言实现机器学习,包含平行处理、降维、特征选取和分类 ● 如何使用R语言的多重插补技术解决数据缺失问题 ● 如何使用广义线性可加模型实现普通量、二值量和计次量的输出,如何使用自采样法(Bootstrapping)分析不确定性 ● 学习如何对个体内的变异性进行建模,进而捕捉个体在方法以及时间稳定性上的差异
本书是一部通过提供一套易于遵守及操作的方法论来实现高质量数据管理的实践指南。内容 全面、详细,并有许多实用的建议和模板,第1版推出后,已成为全球信息质量实践者的书 籍,甚至已成为美国阿肯色大学信息质量研究生项目的教科书。 本书共7章,内容包括数据质量和依赖于数据的世界、数据质量实践、关键概念、十步法流 程、设计项目结构、其他技巧和工具,以及写在最后的话。 作者将信息质量的概念框架与改善信息质量的技术、工具、操作指南相结合,提出并详细描 述了获取高质量数据和可信信息的十步法。作为本书的最新改版,作者进一步阐明并更新了流程 步骤和支持模板,整合了一些有价值的示例和案例,说明了近些年技术和数据生产的演变。 本书内容丰富,理论和实践相结合,易读性和可操作性强,可以作为数据质量管理的入门和 进阶用
SQL注入攻击是一种已经长期存在,但近年来日益增长的安全威胁,本书致力于深入探讨SQL注入问题。本书前一版荣获2009Bejtlich*图书奖,第2版对内容做了全面更新,融入了一些*的研究成果,包括如何在移动设备上利用SQL注入漏洞,以及客户端SQL注入等。本书由一批SQL注入专家编写,他们对Oracle、SQLServer、MySQL和PostgreSQL数据库平台的SQL注入问题具有独到的见解。 主要内容 ● 发现、确认和自动发现SQL注入漏洞 ● 通过SQL注入利用漏洞 ● 在代码中发现SQL注入的方法和技巧 ● 利用操作系统的漏洞 ● 在代码层和平台层防御SQL注入攻击 ● 确定是否已经遭到SQL注入攻击
《MATLAB函数及应用》以MATLAB R2020为平台编写,介绍MATLAB常用工具箱中常用的函数,并对每个函数的语法格式和应用进行详细介绍,让读者了解每个函数的功能与用法,从而领略MATLAB简单易用、处理功能强大等特点。 《MATLAB函数及应用》共14章,分别介绍矩阵相关操作函数、数据可视化函数、数据分析函数、概率统计函数、偏微分方程函数、优化函数、图像处理函数、神经网络函数、信号处理函数、控制系统函数、样条函数、小波变换函数、模糊逻辑函数、计算机视觉函数等内容。 《MATLAB函数及应用》适合MATLAB初级、中级和高级用户学习使用,也适合作为深入研究MATLAB软件的开发者的参考用书,同时也可作为一本全面涵盖MATLAB各项内容的快速查询手册。
近年来,在所有科学学科和工业环境中收集的数据量和种类都出现了爆炸式增长。如此庞大的数据集给统计和机器学习领域的研究人员带来了许多挑战。本书对高维统计学进行了详尽介绍,重点介绍核心方法论和理论,包括尾部界、集中不等式、一致律和经验过程以及随机矩阵。此外还深入探索了特定的模型类,包括稀疏线性模型、用秩约束矩阵模型、图模型和各种类型的非参数模型。书中提供了数百个工作示例和练习,既适合统计学相关课程使用,也适合统计学、机器学习和相关领域的研究生与研究人员自学。
在大数据时代,数据的获取、传输和存储融入了人类生产生活的方方面面,而大数据核心价值体现为人们对数据的分析、理解与应用。面对如此海量、高速和异构的数据,仅靠人类的认知和理解能力远不能满足价值发现的需要。同时,计算机总是针对最细粒度数据进行迭代优化的求解模式在特定场景下也不能满足数据分析的时限需求。粒计算作为一种模拟人类知识表示和问题求解的近似数据分析范式,其优点在于解决问题时能够选择合适粒度,达到求解精度和计算时效的**平衡。所以,粒计算通常能够以更高的效率获得“有效解”。本书以引领树和云模型作为数据多粒度表示的基本方法,系统地展示了引领树和云模型在大数据多粒度聚类、数据流即时聚类、半监督学习和时间序列预测等大数据分析场景中的理论研究成果及应用案例。
本书以敏捷分析工具Tableau为基础,部分章节辅以SQL讲解,系统介绍了数据可视化分析的体系和方法,内容涵盖问题分析方法、数据合并和建模、可视化图形的选择和构建、多种交互方式及其组合、仪表板设计与高级交互、基本计算和高级计算等。 本书以Tableau Desktop的应用为中心,借工具讲解原理,以原理深化工具应用,并由点及面地介绍了业务分析的思考和原理,特别是提出了实践性的"业务 数据 分析 层次框架,并以三类"详细级别 的概念贯通数据模型、高级筛选和高级计算三大主题。 本书重点介绍工具应用背后的思考方式和原理,帮助读者建立"详细级别 的思考框架,举一反三,从而实现多维、结构化分析。
本书提供了学习大数据技术及架构的一站式解决方案,覆盖了大数据生态圈中的完整技术体系,包含以下内容。 . 一、数据采集 日志数据采集工具(Flume 、Logstash、Filebeat ) 数据库数据采集工具(离线采集工具 Sqoop、DataX,实时数据采集工具 Canal、Maxwell 网页数据采集工具 物联网数据采集工具 消息队列中间件 . 二、数据存储 分布式文件存储之HDFS NoSQL数据库之HBase NoSQL数据库之Redis . 三、离线数据计算 离线计算引擎MapReduce 离线计算引擎Spark . 四、实时数据计算 实时计算引擎Storm 实时计算引擎Spark Streaming 新一代实时计算引擎Flink . 五、OLAP数据分析 离线OLAP引擎(Hive、Impala、Kylin) 实时OLAP引擎(Druid、ClickHouse、Doris) . 六、全文检索引擎 Lucene Solr Elasticsearch . 七、分布式任务调度系统 Azkaban Ooize DolphinScheduler . 八、分布式资源管理 YARN的原理、架构 YARN
本书英文原版由全球数据中心业内专家共同编写,中文版由国内数据中心业内专家共同翻译并修订完成。内容涵盖了数据中心全生命周期的相关技术及运营管理策略。从数据中心规划、选址、设计、建设、测试、验收、运营到灾备,内容全面详实。是作者及译者多年经验所得。是一本来自全球不同国家、不同企业、不同专业领域的专家共同完成的杰作。 本书可作为数据中心设计者、建设者、管理者以及投资者的学习及参考材料,亦可作为高校相关专业学生及其他人士了解数据中心行业的入门材料。
本书基于感知和可视化的科学,介绍了大量应用的提升可视化效果的关键原则和方法。新版增加了可视化领域的新进展,特别是增加了神经科学感知相关的可视化内容。
本书系统论述了图数据库的理论知识与行业应用实践。本书分为理论篇和实践篇,共15章。其中,理论篇包括第1~8章,由浅入深地介绍了图数据库的概念和底层技术原理,涵盖主流图数据库的内核原理与架构设计、图查询语言、图算法 、图数据库客户端编程、图数据库服务端编程、图可视化、图数据库选型等内容;实践篇包括第9~15章,介绍了图数据库的行业应用案例,涵盖知识图谱、金融、泛政府、零售、制造业供应链管理、企业资产管理、生命科学等内容,通过这些案例,进一步启发读者深入思考和挖掘潜在的应用场景。针对行业案例,本书免费提供详尽的源代码,以便读者动手实践。 本书适合数据库应用开发人员、数据库管理人员、数据科学家以及负责数据库选型的技术专家阅读,也适合高等院校数据库专业的高年级本科生和研究生参考。
本书主要介绍大数据分析与应用,包括数据驱动程序设计、数据前处理、统计机器学习基础、无监督式学习、监督式学习、其他学习方式(集成学习、深度学习、强化学习)等6章内容。 本书特色:文字说明、程序代码与执行结果等交叉呈现,有助于阅读理解;提供来自不同领域的资料处理与分析范例;同时掌握数据分析两大主流工具 R 与 Python;凸显第四代与第三代程序语言的不同之处。 本书读者对象:计算机、人工智能、大数据等相关专业的本科生、研究生,对大数据分析与应用感兴趣的社会读者,以及大数据分析与应用行业的工程技术人员。
本书系统的介绍了Vue框架基础、框架应用、生态组成、项目实战、框架演进、Vue原理剖析及Vue框架的原理实现。 全书共分为8章:第1章为行业发展介绍,第2章为Vue 2.x的开发基础,第3章为Vue 2.x的组件开发,第4章为Vue CLI开发完全指南,第5章为Vue CLI项目实战,第6章为Vite Vue 3完全开发指南,第7章为Vue 3.x项目实战,第8章为实现原理介绍。书中主要内容包括:Web前端发展史、Vue的诞生、Vue 2.x基础指令、Vue 2.x常用API、Vue 2.x组件系统、Vue 2.x组件化实战、Vue CLI脚手架搭建、Vue Router 3.x路由系统、Vuex 3.x状态管理系统、Axios网络插件、ElementUI框架、Vue 2.x综合项目实战、Vue 3.x基础语法、Vue 3.x组合式API、Vue 3.x响应式API、Vite脚手架、Vue 3.x函数式编程、Vue Router 4.x路由系统、Vuex 4.x状态管理系统、Pinia状态管理系统、ElementPlus框架、Vue 3.x的综合项目实战、Vue 2.x的响应式数据原理、Vu
本书是华为 HCIA-openGauss 认证考试的官方教材。本书首先对 openGauss 数据库进行概述;其次介绍了 openGauss 的体系架构及关键特性;接着讲解了 openGauss 数据库安装部署的过程,并对 openGauss数据库及核心对象进行了详细说明;还介绍了 SQL 基础,其中包括 SQL 操作符、常用函数和语法分类等;最后介绍了华为云数据库GaussDB(for openGauss)及其应用场景。除了有全面的知识讲解,本书还有综合案例,通过理论与案例结合,帮助开发者快速掌握 openGauss 数据库的开发技能。 本书不仅适合备考 HCIA-openGauss 认证的人员和从事软件开发工作的专业人员阅读,还适合高等院校相关专业的学生、准备投身数据库领域的人员及网络技术爱好者阅读。
复杂性是大数据区别于小数据的本质特性,也是当前大数据质量控制与数据治理面临的核心挑战。本书围绕大数据的复杂性开展研究,旨在探索当前数据资源建设与利用过程中面临的挑战和技术难题,促进数据价值的充分释放。 全书分为6部分,共24章。第1部分概述(第1、2章),综述所研究数据控制技术的基本概念和任务定位,以及国内外的研究进展; 第2部分实体分辨技术(第3~13章),研究了高维数据实体分辨、名称分辨、XML数据实体分辨和跨模态数据实体分辨等; 第3部分真值发现技术(第14~18章),研究了单真值发现、多真值发现、文本数据真值发现,以及基于多蚁群优化和基于深度神经网络的真值发现等; 第4部分基于数据依赖的数据质量控制技术(第19~21章),研究了数据录入辅助预测与推理方法、不一致数据检测与修复方法,以及有限先验知识下的全局数据质量评