Stata是一种功能全面的统计分析软件包,具有易操作、运行速度快、功能强大的特点,主要针对经济、管理、医学、农学、教育、市场研究、社会调查等行业和领域,是大数据时代为流行的计量软件之一。 全书内容共分17章。第1、2章介绍Stata操作入门及数据处理基础知识、描述性统计与图形绘制基础。第3~5章介绍假设检验、方差分析、相关分析等基础分析方法。第6~10章通过相关案例介绍经典及放松各种假定条件的回归分析,包括基本线性回归分析、线性回归分析诊断与处理、非线性回归分析、因变量离散回归分析、因变量受限回归分析等应用。第11~16章以典型案例讲解主成分分析与因子分析、聚类分析、时间序列数据分析、面板数据分析、生存分析、多方程模型等高级分析方法。第17章介绍如何使用Stata进行高质量的综合性研究,讲解研究方案设计、调查问卷的制
《大话数据结构【溢彩加强版】》以一个计算机教师的教学过程为场景,讲解数据结构和相关算法的知识。全书以趣味方式来叙述,大量引用各种各样的生活知识来类比,并充分运用全彩色图形语言来解读抽象内容,对数据结构所涉及的一些经典算法做出逐行分析、多算法比较。与同类图书相比,《大话数据结构【溢彩加强版】》内容有趣易读,算法讲解细致深入,是一本非常适合自学的读物。 对于学习数据结构来说,难点之一是对相关算法的理解。《大话数据结构【溢彩加强版】》创新性地采用全彩印刷,图表、流程、代码等内容结合色彩来重新进行约定和归纳,使得对一些难以理解的知识点的解析更加清晰顺畅,极大提升了阅读体验。 《大话数据结构【溢彩加强版】》主要内容包含:数据结构介绍、算法推导大O阶的方法;顺序结构与链式结构差异、栈与队列
本书是国际数据管理协会(DAMA国际)组织众多国际专家对过去30多年数据管理领域知识和实践的总结,是市场上综合了数据管理方方面面的一部具有性的基础工具书。从数据治理、数据架构、数据质量、数据安全、主数据管理、参考数据管理、元数据管理、商务智能和数据参考管理、数据建模设计、数据存储和操作、数据集成和互操作、文档和内容管理、大数据、数据管理人员的道德要求等方面介绍了数据管理的知识体系。
《GraphPad Prism科技绘图与数据分析》以GraphPad Prism 9.4为软件平台,结合编者多年的数据分析经验,通过大量实例系统全面地介绍Prism在科研数据处理中的使用方法与技巧。全书共11章:第1~3章主要讲解GraphPad Prism的基础知识,包括用户界面、项目组成、图形的输出、数据的输入、数据表类型、图形的修饰与美化等;第4~11章结合Prism数据表的特点,分别讲解各类数据表的数据格式、数据表能够完成的图表绘制以及可以实现的统计分析等。通过阅读本书,可以帮助读者快速掌握GraphPad的应用,从而更好地处理和分析科研数据。 本书注重基础,内容翔实,突出示例讲解,既可以作为从事数据分析处理的科研工程技术人员的自学用书,还可以作为高等学校相关专业的本科生和研究生的教学用书。
《数据分析实践:专业知识和职场技巧》从初学者的角度出发,讲解了进阶为高级数据分析师所需的知识和技能,其中既包括数据分析岗位的介绍、发展现状及未来趋势,也包括实际工作中各环节的方法策略、实战案例,还包括职场中的困惑解答及面试指导。阅读本书,并基于本书进一步拓展所需要的知识能,可以帮助读者形成一套成系统、可实战的数据分析方法论。
本书以统计学史上著名人物的伟大成就为脉络,将数据分析这一学科的发展历程娓娓道来。从开普勒仰望星空拉开统计学序幕,贝叶斯提出主观概率,到人工智能、深度学习逐步渗透今天的日常生活。本书带领读者在数据科学的熠熠星光下,看透大数据的深邃内核。
《算法竞赛入门经典 训练指南(升级版)》是《算法竞赛入门经典(第2版)》一书的重要补充,旨在补充原书中没有涉及或者讲解得不够详细的内容,从而构建一个更完整的知识体系。本书通过大量有针对性的题目,让抽象复杂的算法和数学具体化、实用化。 《算法竞赛入门经典 训练指南(升级版)》共包括6章,分别为算法设计基础、数学基础、实用数据结构、几何问题、图论算法与模型以及更多算法专题。全书通过206道例题深入浅出地介绍了上述领域的各个知识点、经典思维方式以及程序实现的常见方法和技巧,并在章末给出了丰富的分类习题,供读者查漏补缺和强化学习效果。 《算法竞赛入门经典 训练指南(升级版)》题目多选自近年来ACM/ICPC区域赛和总决赛真题,内容全面,信息量大,覆盖了常见算法竞赛中的大多数细分知识点。书中还给出了所有重
本书对可视化技术、交互技术以及数据分析方法进行了系统和全面的讲解。介绍了交互式可视化数据分析解决方案的设计标准,论述了设计中的影响因素以及工作流程的检验方法。读者可以从中了解可视化编码的基础知识,以及用于多元数据、时间数据、地理空间数据和图形数据等方面的众多可视化技术。 书中专门用一章的内容来介绍与可视化效果互动的常规概念,并且利用图示来说明现代交互技术如何推动可视化数据分析的发展。针对如今庞大而复杂的数据,本书涵盖了自动化分析计算支持可视化数据分析的相关内容,另外还介绍了多屏幕环境下的高级可视化概念、数据分析过程中的用户指南以及渐进式可视化数据分析等技术。 作者用简洁明了的术语以自上而下的视角解读了交互式可视化数据分析。众多真实案例和丰富的插图将使学生、本领域专家、数据密
对于任何依赖经常性收入和重复销售的企业来说,让客户保持活跃并持续购买是必不可少的。客户流失(或 流失 ),这种代价高昂且令人沮丧的事情是可以预防的。通过使用本书中介绍的技术,你可以识别客户流失的预警信号,并学会在客户离开之前识别并挽留他们。 《客户留存数据分析与预测》向开发人员和数据科学家传授经过实践证明的技术与方法,可以在客户流失发生之前阻止其发生。本书包含很多来自现实中的示例,介绍如何将原始数据转换为可衡量的行为指标、计算客户生命周期价值,并使用人口统计数据改进客户流失预测。通过遵循 Zuora 首席数据科学家 Carl Gold 的方法,你将获得高客户留存率带来的优势。 主要内容 ● 计算流失指标 ● 通过客户行为预测客户流失 ● 使用客户细分策略减少客户流失 ● 将客户流失分析技术应用于其他业务领域 ● 使用
数据科学的关键技术包括数据存储计算、数据治理、结构化数据分析、语音分析、视觉分析、文本分析和知识图谱等方面。本书的重点是详细介绍文本分析和知识图谱方面的技术。文本分析技术主要包括文本预训练模型、多语种文本分析、文本情感分析、文本机器翻译、文本智能纠错、NL2SQL问答以及ChatGPT大语言模型等。知识图谱技术主要包括知识图谱构建和知识图谱问答等。本书将理论介绍和实践相结合,详细阐述各个技术主题的实现路线,并对应用于业界算法大赛中的技术方案和技巧进行源代码解读,帮助读者深入理解技术原理。最后,本书还介绍了文本分析和知识图谱技术在政务、公共安全、应急等多个行业中的智能应用实践案例。 《数据科学技术:文本分析和知识图谱》适合具备Python和机器学习技术基础的高等院校学生、文本分析(或者自然语言处理)以
《matplotlib数据可视化实战》借助matplotlib讲解开展数据可视化实践所需要掌握的关键知识和技能,从设置图表基础元素(坐标轴、标签、颜色、数学符号等),到根据表现内容绘制不同类型的图表(折线图、条形图、圆饼图、小提琴图等),全面讲解了 matplotlib 的使用方法。为方便读者学习, 书中对相关操作都配以案例及代码进行讲解,读者可以根据自身需求,灵活使用其中的函数 和语句。 本书适合数据分析、数据可视化领域的爱好者、从业者阅读,也适合作为高校相关专业的教材。
本书是一本指导DBA进行数据库开发和运维的实用手册,本书共9章,包括漫谈数据库、如何提升数据库性能、如何运维好数据库、如何进行数据库设计、如何做好数据库之间的数据同步、认识HTAP技术、认识数据库的功能原理、认识数据库中的数学(逻辑与算法),以及DBA的日常:数据库管理及开发的最佳实践。另有附录DBA杂谈。 本书内容是资深DBA多年实践经验的归纳总结,涵盖DBA日常工作中的主要方面,通过剖析众多的真实案例,并解读原理、分享技巧、提供思路,内容具备较强的启发性和指导性。 本书的受众包括但不限于想要了解如何提升数据库性能的应用开发人员、DBA、业务架构师、IT架构师、数据架构师、数据分析师、系统架构师、解决方案架构师和企业高级管理人员。
《Pandas数据分析》详细阐述了与Pandas数据分析相关的基本解决方案,主要包括数据分析导论、使用Pandas DataFrame、使用Pandas进行数据整理、聚合Pandas DataFrame、使用Pandas和Matplotlib可视化数据、使用Seaborn和自定义技术绘图、金融分析、基于规则的异常检测、Python机器学习入门、做出更好的预测、机器学习异常检测等内容。此外,本书还提供了相应的示例、代码,以帮助读者进一步理解相关方案的实现过程。 本书适合作为高等院校计算机及相关专业的教材和教学参考书,也可作为相关开发人员的自学用书和参考手册。
本书系统论述了图数据库的理论知识与行业应用实践。本书分为理论篇和实践篇,共15章。其中,理论篇包括 ~8章,由浅入深地介绍了图数据库的概念和底层技术原理,涵盖主流图数据库的内核原理与架构设计、图查询语言、图算法、图数据库客户端编程、图数据库服务端编程、图可视化、图数据库选型等内容;实践篇包括第9~15章,介绍了图数据库的行业应用案例,涵盖知识图谱、金融、泛政府、零售、制造业供应链管理、企业资产管理、生命科学等内容,通过这些案例,进一步启发读者深入思考和挖掘潜在的应用场景。针对行业案例,本书免费提供详尽的源代码,以便读者动手实践。 本书适合数据库应用开发人员、数据库管理人员、数据科学家以及负责数据库选型的技术专家阅读,也适合高等院校数据库专业的高年级本科生和研究生参考。
本书围绕精益创业展开讨论,融合了精益创业法、客户开发、商业模式画布和敏捷/持续集成的精华。本书汇聚了100多位创始人、投资人、内部创业者和创新者的成功创业经验,呈现了 30 多个 价值的案例分析,可以为各阶段的创业者提供行为准则。 如果你是一名创业者,或者你是一名产品开发、产品管理、市场营销、公共关系和投资领域的商务专业人员,那么本书不容错过。
本书的主要内容有:深入探讨BigQuery的内部工作方式,包括其整体架构。学习BigQuery支持的数据类型、函数和运算符。优化查询语句和schema,从而提高性能或降低成本。使用标准SQL中高级功能,如GIS、历史快照、DDL/DML、用户定义函数和脚本。使用BigQuery ML解决各类机器学习问题。学习如何保护数据、监控作业,以及授权用户。