本书是享誉全球的Python入门书,影响了超过250万读者。全书分两部分:部分介绍用Python编程所必须了解的基本概念,包括强大的Python库和工具,以及列表、字典、if语句、类、文件和异常、代码测试等内容;第二部分将理论付诸实践,讲解如何开发三个项目,包括简单的2D游戏、利用数据生成交互式的信息图以及创建和定制简单的Web应用,并帮助读者解决常见编程问题和困惑。第3版进行了全面修订:使用了文本编辑器VS Code,新增了介绍removeprefix()方法和removesuffix()方法的内容,并且在项目中利用了Matplotlib和Plotly的特性,等等。
本书主要以国内A股市场为例,借助第三方量化交易平台,讲述了KNN、线性模型、决策树、支持向量机、朴素贝叶斯等常见机器学习算法在交易策略中的应用,同时展示了如何对策略进行回测,以便让读者能够有效评估自己的策略。 另外,本书还讲解了自然语言处理(NLP)技术在量化交易领域的发展趋势,并使用时下热门的深度学习技术,向读者介绍了多层感知机、卷积神经网络,以及长短期记忆网络在量化交易方面的前瞻性应用。 本书没有从Python基础语法讲起,对于传统交易策略也只是一带而过,直接将读者带入机器学习的世界。本书适合对Python语言有一定了解且对量化交易感兴趣的读者阅读。
金融量化分析不仅需要掌握金融领域的知识,还需要掌握相关的计算机编程技术。《Python金融量化分析》全面、系统地介绍金融量化分析所需要掌握的技能。无论是具有丰富的编程经验的读者,还是普通的投资爱好者,均可参照本书内容开发自己的量化交易策略回测代码,实现金融量化分析辅助投资的目的。 《Python金融量化分析》共9章,涵盖的主要内容有金融量化交易策略分析概述,Python的基础语法,Pandas模块基础,NumPy基础,数据获取与清洗,金融量化交易策略实战,TA-Lib、Empyrical与Mplfinance模块的使用方法,金融数据回归分析,ARIMA与VAR模型在金融量化领域的应用,开源金融量化交易策略回测框架Backtrader的使用方法等。掌握这些内容,可以解决金融量化分析涉及的编程语言基础、数据获取、量化交易策略构建、统计学与金融学理论在金融量化领域的高级应用,
本书就Python基础知识和交易策略的基本原理为切入点,由浅入深介绍了如何从零基础使用vn.py搭建自己交易系统。本书从原理着手到代码实践,内容由最基本的Python基础知识与Python中金融分析的常用包,逐步由浅入深介绍常用的指标并将使用vn.py进行实现。 本书共分为8章,第1章与第2章介绍vn.py的环境搭建与Python常用的工具包,为后面使用vn.py实现交易策略做准备;第3章与第4章介绍vn.py框架和量化交易的基础知识;第5章到第7章从易到难介绍不同的交易策略并配合大量的实例讲解,进一步巩固vn.py代码的使用,第8章讲解如何在实盘中运行交易策略。 本书面向零基础的新手和有一定计算机与金融知识基础的读者,以通俗易懂的语言和示例阐述量化交易的实现原理,适于对于量化交易有兴趣的读者。带有详细注释的代码将帮助读者进一步理解vn.py的框架和交易策略。
本书是蓝桥杯大赛软件类入门教程,详细讲解了蓝桥杯大赛软件类入门阶段的核心知识点,也是大赛必考和常考的知识点,包括数据结构、基本算法、搜索、数学、动态规划、图论等。 本书用大量的大赛真题作为例题,帮助读者巩固知识点的应用; 代码简洁精要,可作为比赛模板; 文字简洁明快,实现了较好的易读性。 本书适合正在学编程语言或刚学过编程语言,算法和数据结构零基础的算法竞赛初学者,帮助读者学习的知识点、建立计算思维、提高建模能力和编码能力; 本书也可用于其他算法竞赛(全国青少年信息学奥林匹克竞赛(NOI)、国际大学生程序设计竞赛(ICPC)、中国大学生程序设计竞赛(CCPC)、中国高校计算机大赛 团体程序设计天梯赛等)的入门学习。
本书提倡理解为主,应用为王。因此,只要有可能,小甲鱼(注:作者)都会通过生动的实例来让大家理解概念。 虽然这是一本入门书籍,但本书的 野心 并不止于 初级水平 的教学。本书前半部分首先讲解基础的Python 3语法知识,包括列表、元组、字符串、字典以及各种语句;之后循序渐进地介绍一些相对高级的主题,包括抽象、异常、魔法方法以及属性迭代器。后半部分则围绕着Python 3在爬虫、界面开发和游戏开发上的应用,通过实例引导读者进行深入学习和探究,既富有乐趣,又锻炼了读者的动手能力。 本书适合学习Python 3的入门读者,也适合对编程一无所知,但渴望用编程改变世界的朋友们。
本书是国内首先使用 Python tkinter 设计 GUI 的中文书籍之一。本书主要讲解如何在窗口内使 用 Python 的内部模块 tkinter 设计图形用户接口 (GUI) 程序,让用户可以利用图形接口与计算机沟通。 tkinter 模块是一个跨平台的窗口应用程序,使用它设计的程序可以在 Windows 、macOS 、Linux 系 统上执行。 2019 年《Python GUI 设计 tkinter 菜鸟编程》一经出版便受到广大读者的喜爱。为了使其内容 更丰富,本书在其基础上增加了一些重要的项目实例,全书超过 312 个程序实例,一步一步讲解 tkinter 控件 (Widget) 的基础知识,同时也将应用范围扩充至小算盘、分形 (Fractal) 设计、文书编 辑、走马灯、模拟海龟绘图、球类竞赛、风扇设计、单个或多个反弹球设计、钟摆、直方图动态排 序、动画与游戏设计、MP3 音乐播放器。Python 是一门可以灵活使用的程序语言,本书的特色是 对 tkinter 最基础
《Python信号处理仿真与应用(新形态版)》介绍了Python信号处理工具箱的体系架构及其函数和实例。本书共8章,主要包括信号处理概况,Python编程基础,信号生成和预处理,测量和特征提取,变换、相关性和建模,数字和模拟滤波器,频谱分析,借助大语言模型实现信号处理等内容。为了便于读者学习使用和参考,书中提供了较完整的原理方法介绍和计算推导实例。 《Python信号处理仿真与应用(新形态版)》内容全面,实用性强,适用范围广,既可作为高等院校通信与信息系统、电子科学与技术、电子信息工程等相关专业本科生和研究生的课程教材,也可作为通信、雷达信号处理、生物医学信号处理等相关领域的工程技术人员的参考资料。
本书全面系统地介绍了Python语言在常见办公场景中的自动化解决方案。全书分为5篇21章,内容包括Python语言基础知识,Python读写数据常见方法,用Python自动操作Excel,用Python自动操作Word 与 PPT,用Python自动操作文件和文件夹、邮件、PDF 文件、图片、视频,用Python进行数据可视化分析及进行网页交互,借助ChatGPT轻松进阶Python办公自动化。 本书适合各层次的信息工作者,既可作为初学Python的入门指南,又可作为中、高级自动化办公用户的参考手册。书中大量的实例还适合读者直接在工作中借鉴。
Python是一种解释型、面向对象、动态数据类型的高阶程序设计语言,它具有丰富和强大的库,能够把用其他语言(尤其是C/C )制作的各种模块很轻松地联结在一起。这两年随着人们对人工智能的关注越来越多,大家学习Python的热情也越来越高涨。Python在IEEE发布的2017年编程语言排行榜中高居前列。本书介绍了Python编程的基础知识,并以游戏《Minecraft(我的世界)》为载体,通过Python编程来与游戏中的玩家或方块互动,先后实现了 剑球 游戏、五子棋游戏以及像素图像扫描仪这几个项目,最后还实现了通过游戏控制Arduino等外部设备的功能。希望大家能够在游戏的过程中轻松地进入Python的世界,跨越软硬件的鸿沟,初步尝试自动化控制。本书提供边玩游戏边学编程的全新体验,适合对Python编程感兴趣的读者阅读。游戏不再只是用来玩的,你将同时体验超级玩家、设计
本书阐述了如何从攻击者的视角审视自己的网络,从而了解有关技术并有效抵御攻击。通过Python代码示例,读者将学习如何编写密码嗅探、ARP投毒攻击、DNS欺骗、SQL注入、蓝牙WiFi攻击等相关工具,也将了解入侵检测和防御系统以及日志文件分析等防御方法。学习本书不需要有深入的编程和计算机网络原理知识作为基础,想要学习网络编程的Python程序员、想要主动检查系统和网络安全性的管理员和偏好 Python 编程的白帽、灰帽和黑帽黑客均可阅读本书。
使用Python进行数据分析与可视化十分便利且高效,因此Python被认为是***的数据分析工具之一。本书以22个案例,由浅入深地介绍不同数据分析与可视化的应用和实现。仅通过这些案例并不能展示数据分析与可视化的全部精髓,而更多的应用也值得读者在学到一定的基础技能后进一步探索。 本书面向高等院校计算机科学、软件工程、大数据、人工智能等相关专业的师生,以及Python语言初学者和数据分析从业人士。
《Python语言科研绘图与学术图表绘制从入门到精通》系统介绍了使用Python语言进行数据处理、分析和科研绘图的相关知识和技能。 全书共11章,第1章讲解Python基础,第2章讲解数据处理与分析,第3章讲解科研绘图与学术图表绘制库,第4章讲解绘制单变量图形,第5章讲解绘制双变量图形,第6章讲解绘制多变量图形,第7章讲解绘制其他2D图形,第8章讲解绘制3D图形,第9章讲解地理信息可视化,第10章讲解数据学术报告、论文和出版,第11章讲解实战训练营。 《Python语言科研绘图与学术图表绘制从入门到精通》包含大量实例,内容由浅入深,循序渐进,既可作为Python与数据科学相关技能的教材,也可作为研究人员的实用手册,尤其适合需要绘制高质量科研图表的研究人员和在读研究生。
本书是笔者多年从事高校教学经验的结晶之作。全书深入浅出地讲解了使用Python语言进行游戏开发以及帮助读者快速掌握游戏设计的基本原理和方法,同时提高应用Python语言编程的能力。 全书精选11个游戏案例,涵盖不同的游戏类型,每章围绕一个经典游戏案例展开,并突出一个游戏编程的主题。本书涉及的主要知识点包括游戏循环的原理、鼠标及键盘事件的处理、碰撞检测及处理、随机数的运用、定时器的使用、游戏场景的滚动、角色动画的播放、音效及音乐的播放、缓动效果、游戏关卡设计、游戏人工智能的原理及运用等。本书将Python语法知识及常用的编程技巧糅合在各个游戏案例中进行介绍,为读者展示Python语言的实际运用场景。 本书内容安排合理,架构清晰,注重理论与实践相结合,适合作为Python开发零基础读者的教程,也可作为高等院校的辅导教材,
iWork是由苹果公司开发的专业办公软件套装,它适用于使用Mac OS X操作系统和iOS操作系统的电子设备。iWork包括3款软件,即用于处理文字和排版布局的Pages文稿软件、创建各式电子表格的Numbers表格软件和制作演示文稿的Keynote讲演软件。Pages文稿拥有先进的书写工具和方便的页面排版功能,使用它能够创建出色的文稿。Numbers表格拥有易用的公式、一键式图表及多种表格样式,使用它可将大量数据制作为电子表格。Keynote讲演拥有全新的影院效果动画及多种过渡特效,使用它可以设计并制作出目眩神驰的演示文稿。 全书分为3部分,共19章。部分主要讲解Pages文稿的操作方法和使用技巧,包括了解Pages文稿、Pages文稿的基本操作、Pages文稿文本的编辑、使用插入对象、对象的基本操作和在iOS中使用Pages文稿等内容。第二部分主要讲解Numbers表格的操作方法和使用技巧,包括了解
本书以人工智能发展为时代背景,通过实际案例应用描述算法,为Python程序员提供较为详细的实战方案,以便深度学习。主要从算法上分为数学、搜索、回溯、递归、排序、迭代、贪心、分治和动态规划等;从数据结构上分为字符串、数组、指针、区间、队列、矩阵、堆栈、链表、哈希表、线段树、二叉树、二叉搜索树和图结构等。针对经典算法,结合相关的数据结构,从描述问题、问题示例、代码实现以及运行结果相结合,语言简洁,深入浅出,通俗易懂,不仅适合对Python编程有兴趣的科研人员,也适合高等院校作为参考教材。
针对 Python 的特点和初学者的需求,本书将 turtle 库应用于 Python 编程教学中,引导读者在趣味横生的开发过程中学习编程语言。全书包括初级篇、中级篇和高级篇三部分内容,按照 边学边做 的方式,带领读者从零开始学习 Python 基础语法,在实现趣味案例的过程中对所学知识加以实践,以帮助读者掌握本书所涵盖的知识点,并能真正运用到自己的项目开发中去。 本书提供了丰富的案例,涉及绘制几何图案、错觉艺术、分形图形、互动程序、趣味游戏等多个领域,以期有效提升读者的学习兴趣。本书适合对编程感兴趣,特别是首次接触编程的人,也适合学过其他编程语言、想快速学习 Python 的人,还可以作为教材供教学或自学使用。
当前,数据驱动的理念已渗透到各个领域,数据科学和人工智能技术在制造业、金融、教育等多个行业中得到了广泛应用。Python作为一种编程语言,已成为数据科学和人工智能领域的事实标准,它丰富的生态系统进一步增强了它在这些领域中的重要性。然而,随着数据量的不断增长,如何利用Python加速数据科学处理,并将它扩展到集群上的并行计算,已成为数据科学家面临的重要挑战。《Python数据科学加速:Dask、Ray、Xorbits、mpi4py》详细介绍了4种数据科学工具:Dask、Ray、Xorbits和mpi4py,这些工具可以帮助数据工程师和科学家处理更大规模的数据集、训练更复杂的模型,并更高效地进行机器学习模型的迭代和部署。 《Python数据科学加速:Dask、Ray、Xorbits、mpi4py》面向具备一定数据科学基础的数据工程师、数据科学家或领域专家,同时也适合大学生和研究生作为进入高性
量子计算机具有天然的并行性,相比经典计算机能显著提高算法效率,是下一代智能计算的一个重要发展方向。随着量子计算机硬件的发展,通过本地或者云平台进行量子计算越来越容易,量子计算相关研究逐渐从理论走向实用。量子机器学习是机器学习和量子计算的交叉领域,它研究的是如何利用量子叠加、并行等特性降低经典机器学习算法的复杂度,以解决数据量大、数据维度高造成的训练困难等问题。 本书首先介绍量子计算的基础知识,然后将理论和实践相结合,介绍量子降维、量子分类、量子回归、量子聚类、量子神经网络及量子强化学习的算法理论,并提供部分算法的示例和代码,以帮助读者进一步理解量子机器学习算法。 本书可作为量子机器学习的入门书籍,供爱好者了解和学习量子机器学习算法;也可作为 量子机器学习 课程的教科书或参考书,
Python是一种解释型、面向对象、动态数据类型的高 级程序设计语言。这门强大的语言如今在大学和Google、IBM等大型技术公司广泛使用。 本书是一本父母和老师教孩子使用Python进行基础程序设计和解决问题的入门图书。 本书通过科学合理的结构、通俗易懂的文字、活泼有趣的图示,帮助孩子学习计算机的思维方式,而可视化和游戏为主的例子则持续吸引读者的注意力。针对变量、循环、函数等编程基础概念的介绍,可以帮助年轻的程序员构建所需的技能,以制作自己的超酷的游戏和应用。每章末尾的编程挑战,则可以拓展读者的思维,巩固所学习的知识和技能。 本书适合任何想要通过Python学习编程的读者,尤其适合父母、老师、学生,以及想要理解计算机编程基础知识的未成年人阅读学习。
《Python数据分析项目全程实录》精选不同行业、不同分析方法以及机器学习等方向的12个热门Python数据分析项目。这些项目既可以作为练手项目,也可以应用于实际数据分析工作中,其中的机器学习还可作为参赛项目的参考。总体来说,这些项目的实用性都非常强。具体项目包含:热销产品销售数据统计分析、篮坛薪酬揭秘:球员位置与薪资数据的深度分析、股海秘籍:股票行情数据分析之旅、京东某商家的销售评价数据分析、商城注册用户数据探索分析、自媒体账号内容数据分析、汽车数据可视化与相关性分析、抖音电商数据分析系统、会员数据化运营RFM分析实战、商超购物Apriori关联分析、基于K-Means算法实现鸢尾花聚类分析、电视节目数据分析系统。本书从数据分析、机器学习的角度出发,按照项目开发的顺序,系统、全面地讲解每一个项目的开发实现过程。
本书以PySide6/PyQt6的实际应用为主线,以理论基础为核心,引导读者渐进式学习PySide6/PyQt6的编程基础和实际应用。 本书共12章,可分为5部分。第一部分介绍基于项的控件、基于模型/视图的控件(第1章和第2章),第二部分介绍处理数据库、文件、路径、缓存相关的类和应用方法(第3章和第4章)、第三部分介绍使用Graphics/View框架绘图、绘制二维图表和三维图表的相关类和应用方法(第5~7章)、第四部分介绍处理网络、多媒体、打印机、QML相关的类和应用方法(第8~11章)。第五部分以案例的形式介绍了如何使用PySide6和其他Python模块编写实用程序的方法,并介绍了制作程序安装包的方法(第12章)。 本书示例代码丰富,实用性和系统性较强,并配有视频讲解,助力读者透彻理解书中的重点、难点。本书适合初学者入门,精心设计的案例对于工作多年的开发者也有参考
本书以通俗易懂的方式介绍人工智能的基础知识及其应用,采用案例的形式讲解,方便读者轻松阅读。 全书共5章,首先介绍人工智能的基础知识,然后从文本、图像、语音三方面介绍自然语言处理、图像处理、语音识别等人工智能研究领域,后通过实战案例让读者全面了解人工智能的应用。 本书适合有志于了解人工智能基础知识及应用的初、高中学生,也可以作为人工智能初学爱好者的学习资料。
在目前不断变化、蓬勃发展的中国资本市场,量化投资作为新兴的投资方法,引来越来越多的关注,使用量化投资技术的证券从业人员也越来越多。本书分为11章,内容包括Python环境的搭建、Python数据相关类库的使用、掘金量化终端的使用、Talib金融库的详解、多因子策略的介绍、带技术指标的多因子策略、中证红利指数增强策略、回归分析与TensorFlow、回归模型的经典应用、配对交易的魔力等。本书可作为量化投资技术初学者、证券从业人员、金融投资人员的自学用书,也可作为金融机构的培训用书,还可作为高等院校相关专业师生的教学参考书。
本书在不涉及大量数学模型与复杂编程知识的前提下,从零开始逐步带领读者熟悉并掌握当下流行的基于Python 3的数据分析,以及支持单机、深度和分布式机器学习的开源程序库,如pandas、Scikit learn、PyTorch、TensorFlow、PaddlePaddle、PySpark ML等。全书分4部分。入门篇包括对全书核心概念的指南性介绍,以及在多种主流操作系统(Windows、macOS、Ubuntu)上配置基本编程环境的详细说明。基础篇涵盖Python 3的编程基础、基于pandas的数据分析,以及使用Scikit learn解决大量经典的单机(单核/多核)机器学习问题。进阶篇介绍如何使用PyTorch、TensorFlow、PaddlePaddle搭建多种深度学习网络框架,以及如何基于PySpark的ML编程库完成一些常见的分布式机器学习任务。实践篇利用全书所讲授的Python编程、数据分析、机器学习知识,帮助读者挑战和参与Kaggle多种类型的竞赛实战,同时介绍如