本书示例丰富,图文并茂,以简明易懂的方式阐释了算法,旨在帮助程序员在日常项目中更好地利用算法为软件开发助力。前三章介绍算法基础,包括二分查找、大O表示法、两种基本的数据结构以及递归等。余下的篇幅主要介绍应用广泛的算法,具体内容包括:面对具体问题时的解决技巧,比如何时采用分而治之、贪婪算法或动态规划,哈希表的应用,图和树算法,K最近邻算法等。这一版将示例代码更新到了Python 3,并新增了两章专门讨论树,加之诸多修订,使得内容更加完善。
算法详解系列图书共有4卷,本书是第2卷 图算法和数据结构。本书共有6章,主要介绍了3个主题,分别是图的搜索和应用、*短路径以及数据结构。附录简单回顾了渐进性表示法。本书的每一章均有小测验、章末习题,这为读者的自我检查以及进一步学习提供了方便。 本书提供了丰富而实用的资料,能够帮助读者提升算法思维能力。本书适合计算机专业的高校教师和学生,想要培养和训练算法思维和计算思维的IT专业人士,以及正在准备面试的应聘者和面试官阅读参考。
算法是计算机科学领域*重要的基石之一。算法是程序的灵魂,只有掌握了算法,才能轻松地驾驭程序开发。 算法详解系列图书共有4卷,本书是第1卷 算法基础。本书共有6章,主要介绍了4个主题,它们分别是渐进性分析和大O表示法、分治算法和主方法、随机化算法以及排序和选择。附录A和附录B简单介绍了数据归纳法和离散概率的相关知识。本书的每一章均有小测验、章末习题和编程题,这为读者的自我检查以及进一步学习提供了较多的便利。 本书为对算法感兴趣的广大读者提供了丰富而实用的资料,能够帮助读者提升算法思维能力。本书适合计算机专业的高校教师和学生,想要培养和训练算法思维和计算思维的IT专业人士,以及在准备面试的应聘者和面试官阅读参考。
本书是普通高等教育"十一五 *规划教材和国家精品课程教材。全书以算法设计策略为知识单元,系统介绍计算机算法的设计方法与分析技巧。主要内容包括:算法概述、递归与分治策略、动态规划、贪心算法、回溯法、分支限界法、随机化算法、线性规划与网络流等。书中既涉及经典与实用算法及实例分析,又包括算法热点领域追踪。 为突出教材的可读性和可用性,章首增加了学习要点提示,章末配有难易适度的算法分析题和算法实现题;配套出版《计算机算法设计与分析习题解答(第5版)》;并免费提供电子课件和教学网站服务。
本书收集了历年来国家统考和985、211等重点高校和研究院、所的350多套硕士研究生入学“(算法与)数据结构”考试试卷的2100多道试题。作者按照数据结构课程的知识点对这些题目进行分类。在回顾知识点的基础上,对每一类题目进行分析、归纳答题思路,并给出了参考答案。本书收录的题目具有典型性,充分理解这些题目有助于学生更好地掌握数据结构课程的核心内容,以及应用知识解决实际问题的方法。 本书可以作为高等院校计算机及相关专业学习数据结构课程的参考书,对于报考相关专业硕士研究生的考生也极具价值,同时也适用于讲授该课程的教师以及自修该课程的其他人员。
本书是 逻辑与形而上学教科书系列 中的一本。递归论是数理逻辑的主要分支之一。本书介绍了递归论的基础知识,以及某些有影响的问题与经典构造。本书共分5章。*章介绍了图灵机、递归、递归可枚举等概念以及相关的定理。第二章列举了一些重要的不可判定问题,其中包括希尔伯特第十问题(丢番图整数解判定问题)的否定性结果(即马季亚谢维奇定理)和它的完整证明。第三章介绍了递归论度理论的核心概念和基本事实。在第四章中,读者可以找到递归论中经典的构造技巧 尾节扩张(算术力迫)和有穷损害优先方法。第五章简单介绍了递归论的当前热点 算法随机性理论的基本概念,其中包含马丁-洛夫随机性的几个等价刻画。本书可以作为递归论导论课程的教材,以期为进一步学习与研究递归论建立兴趣并打下基础。本书也可以帮助有兴趣的读者了解递
本书是用轻松有趣的方法学习算法的入门指南。按照算法策略分为8章。第1章以算法之美、趣味故事引入算法,讲解算法复杂度的计算方法,以及爆炸性增量问题。2~7章讲解经典算法,包括贪心算法、分治算法、动态规划算法、回溯法、分支限界法、网络流算法。第8章讲解实际应用中的算法和高频面试算法,包括启发式搜索、敏感词过滤、LRU算法、快慢指针、单调栈、单调队列、零钱兑换、股票交易等。每一种经典算法都有4~8个实例,多数按照问题分析、算法设计、完美图解、算法详解、算法分析及优化拓展的流程进行讲解。全书讲解清晰,通俗易懂,紧扣工程教育认证的要求和实用性,力求满足新工科人才培养的需要。 本书为河南省 十四五 普通高等教育规划教材,提供了丰富的教学资源与答疑服务,包括源代码、课件、教案、习题、在线答疑和在线测试系
内容介绍 本书基于Python全面介绍了机器学习在信贷风控领域的应用与实践,从原理、算法与工程实践3个维度全面展开,包含21种实用算法和26个解决方案。 作者是智能风控、人工智能和算法领域的专家,曾在多家知名金融科技企业从事风控算法方面的研究与实践,经验丰富,本书得到了风控领域9位专家的高度评价。 全书一共8章,每个章节都由问题、算法、案例三部分组成,具有系统性和实战性。 第1-2章讲解了信贷业务的基础知识以及常用的规则引擎、信用评估引擎的建模方法。 第3章以项目冷启动为背景,讲解了风控领域应用广泛的迁移学习方法。 第4-5章介绍了幸存者偏差与不均衡学习中所使用的无监督学习与半监督学习方法。 第6章阐述了无监督的异常识别算法,该算法常用于数据清洗与冷启动项目,是反欺诈引擎中常用的个体欺诈检测方法。 第7章分享了一
随着复杂网络研究的深入发展和研究领域的不断 扩展,其应用日益广泛。近年来各类数学建模竞赛中 ,基于复杂网络的题目层出不穷,但目前大部分数学 建模书籍中都没有涉及复杂网络的相关内容,而复杂 网络方面的专著偏重于基础理论和方法,涉及算法程 序实现的很少。 将基本理论和计算机算法实现相结合正是本书编 写的初衷。孙玺菁、司守奎编著的《复杂网络算法与 应用》共计9章,主要涉及复杂网络静态特征,各种 网络模型,复杂网络上的传播模型和动力学分析,复 杂网络上的同步研究,复杂网络中的搜索策略,复杂 网络中的社团结构,网络层次分析法,网络博弈论。 基于Matlab给出了作者自主编写的函数和程序,并对 书中出现的大部分例题配备了程序,便于学生从理论 和求解两个角度入手学习复杂网络的相关理论,在学 习中举一反三、
大模型技术掀起了新一轮人工智能浪潮,以ChatGPT 为核心的大模型相关技术可以应用于搜索、对话、内容创作等众多领域,在推荐系统领域的应用也不例外。 本书主要分为3部分。 第1部分简单介绍大模型相关技术,包括大模型的预训练、微调、在线学习、推理、部署等。 第2部分将大模型在传统推荐系统中的应用抽象为4种范式 生成范式、预训练范式、微调范式、直接推荐范式,并对每种范式给出算法原理说明、案例讲解和代码实现。 第3部分以电商场景为例,讲解大模型在电商中的7种应用,包括生成用户兴趣画像、生成个性化商品描述信息、猜你喜欢推荐、关联推荐、冷启动问题、推荐解释和对话式推荐,每种应用场景都包含完整的步骤说明和详细的代码实现,手把手教你构建大模型推荐系统。 本书适合有一定推荐系统基础,期望深入了解和学习大模型技术
本书内容包括经典的算法设计技术,主要介绍数据结构和标准模板库、递归与分治策略、动态规划、贪心算法、回溯算法、分支限界算法、图的搜索算法、图论、数论和组合数学问题。本书包括大量的问题实例,并在北京大学、浙江大学和杭州电子科技大学在线题库中精选原题,详细地分析解题的方法,深入浅出地讲解用到的算法,章后的上机练习题也选自在线题库中的典型题目,供读者练习,以巩固所学算法。本书内容基本上涵盖了目前大学生程序设计竞赛所要掌握的算法。 本书结构清晰、内容丰富,适合作为计算机科学与技术、软件工程以及相关学科算法课程的教材或参考书,特别适合有志于参加信息学竞赛和ACM大学生程序设计竞赛的读者学习和训练。
本书以海量图解的形式,详细讲解常用的数据结构与算法,又融入大量的竞赛实例和解题技巧。通过对本书的学习,读者可掌握12种初级数据结构、15种常用STL函数、10种二叉树和图的应用,以及8种搜索技术,并领悟不同的数据结构和算法的精髓,熟练应用各种算法解决实际问题。 本书总计9章。第1章讲解C 语言基础,包括语法、函数、递归和数组;第2章讲解算法入门知识,包括算法复杂度计算、贪心算法、分治算法和STL应用;第3章讲解线性表的应用,包括顺序表、单链表、双向链表、循环链表和静态链表;第4章讲解栈和队列的应用,包括顺序栈、链栈、顺序队列和链队列;第5章讲解树的应用,包括树的存储、二叉树遍历与还原、哈夫曼编码;第6章讲解图论基础,包括图的存储、图的遍历和图的连通性;第7章讲解图的应用,包括短路径、小生成树、拓扑排序
本书较为系统地介绍最优化领域中比较成熟的基本理论与方法。基本理论包括最优化问题解的必要条件和充分条件以及各种算法的收敛性理论。介绍的算法有:无约束问题的最速下降法、Newton法、拟Newton法、共辄梯度法、信赖域算法和直接法;非线性方程组和最小二乘问题的Newton法和拟Newton法;约束问题的罚函数法、乘子法、可行方向法、序列二次规划算法和信赖域算法等。还介绍了线性规划的基本理论与单纯形算法以及求解二次规划的有效集法。并简单介绍了求解全局最优化问题的几种常用算法。 作为基本工具,本书在附录中简要介绍了求解线性方程组的常用直接法和选代法以及MATLAB初步知识。
这是一本可帮助读者深度理解并全面掌握ClickHouse运行原理并进行实践开发的工具书,涵盖了ClickHouse的时代背景、发展历程、核心概念、基础功能、运行原理、实践指导等多个维度的内容,尤其是在ClickHouse*核心的部分 MergeTree表引擎与分布式方面,书中对其实现原理和应用技巧进行了详细解读。 本书采用浅显易懂的语言 大量演示案例 大量示意图例的形式呈现,以求让读者在*短的时间内,以*舒服的方式,获得*核心的知识。本书的理论观点来自作者在OLAP领域10余年的工作思考与总结;功能与实操的素材来自作者在工作中对ClickHouse的深度应用与实践;原理解析部分的素材来自对大量专业文献的钻研与源码级的调试与解读。 本书在逻辑上分为三大部分: 第1~2章从宏观的角度出发,描述了时代背景、ClickHouse的发展历程及其核心特点。其中,对MOLAP、ROLAP和HORAP三
演化学习利用演化算法求解机器学习中的复杂优化问题, 在实践中取得了许多成功, 但因其缺少坚实的理论基础, 在很长时期内未获得机器学习社区的广泛接受. 本书主要内容为三位作者在这个方向上过去二十年中主要工作的总结. 全书共18 章, 分为四个部分: 部分(第1~2 章) 简要介绍演化学习和一些关于理论研究的预备知识; 第二部分(第3~6章) 介绍用于分析运行时间复杂度和逼近能力这两个演化学习的基本理论性质的通用工具; 第三部分(第7~12 章) 介绍演化学习关键因素对算法性能影响的一系列理论结果, 包括交叉算子、解的表示、非精确适应度评估、种群的影响等; 第四部分(第13~18 章) 介绍一系列基于理论结果启发的具有一定理论保障的演化学习算法. 本书适合对演化学习感兴趣的研究人员、学生和实践者阅读. 书中第二部分内容或可为有兴趣进一步探索演化学习理
本书以海量图解的形式,详细讲解常用的数据结构与算法,并结合竞赛实例引导读者进行刷题实战。通过对本书的学习,读者可掌握22种高级数据结构、7种动态规划算法、5种动态规划优化技巧,以及5种网络流算法,并熟练应用各种算法解决实际问题。 本书总计8章。第1章讲解实用数据结构,包括并查集、优先队列;第2章讲解区间信息维护与查询,包括倍增、ST、RMQ、LCA、树状数组、线段树和分块;第3章讲解字符串处理,包括字典树、AC自动机和后缀数组;第4章讲解树上操作问题,包括点分治、边分治、树链剖分和动态树;第5章讲解各种平衡二叉树,包括Treap、伸展树和SBT;第6章讲解数据结构进阶,包括KD树、左偏树、跳跃表、树套树和可持久化数据结构;第7章讲解动态规划及其优化,包括背包问题、线性DP、区间DP、树形DP、数位DP、状态压缩DP、插头DP和动态规
本书系统介绍程序设计中常用的基础算法及典型案例,包括排序算法、递归算法、数论基础、组合数学基础、贪心算法、分治算法、动态规划算法和回溯算法等内容。 全书以图文并茂的方式讲解各种基础算法的分析过程,侧重于基础算法的深入理解与实践,配有大量图表辅助算法的分析过程,适用于有一定程序设计基础、尚未学习数据结构且对算法分析与设计感兴趣的算法初学者。 本书各章节配有典型案例和大量图表,既便于教师课堂讲授,也适合读者自学,可作为高等院校 程序设计基础 课程的延伸和 算法分析与设计 课程的入门教材,也可供程序设计竞赛初学者参考。
区块链技术是一种全新的分布式基础架构和计算方式,本书着重阐述区块链系统中的共识算法理论及其场景应用。全书共分7章。第1章介绍区块链的发展过程和基本知识。第2~5章介绍传统分布式系统的一致性算法和典型区块链系统的共识机制,并详细介绍基于投票和信任的两种共识算法。第6章介绍融合区块链的拟态分布式安全存储系统。第7章介绍基于联盟链共识的共管共治多标识网络体系管理系统。
集成学习方法是一类先进的机器学习方法,这类方法训练多个学习器并将它们结合起来解决一个问题,在实践中获得了巨大成功。全书分为三部分。*部分主要介绍集成学习的背景知识;第二部分主要介绍集成学习方法的核心知识,包括Boosting、Bagging、Random Forests等经典算法,平均、投票和Stacking等模型和方法、相关理论分析工作,以及多样性度量和增强方面的进展。第三部分介绍集成学习方法的进阶议题,包括集成修剪、聚类集成和集成学习方法在半监督学习、主动学习、代价敏感学习、类别不平衡学习,以及提升可理解性方面的进展。此外,本书还在每章中的 拓展阅读 部分提供了相关的进阶内容。本书适合对集成学习方法感兴趣的研究人员、学生和实践者阅读。
内 容 提 要 本书结合实际应用场景讲解数据结构和算法,涵盖常用、常考的数据结构和算法的原理讲解、代码实现和应用场景等。 本书分为11章。第1章介绍复杂度分析方法。第2章介绍数组、链表、栈和队列这些基础的线性表数据结构。第3章介绍递归编程技巧、8种经典排序、二分查找及二分查找的变体问题。第4章介绍哈希表、位图、哈希算法和布隆过滤器。第5章介绍树相关的数据结构,包括二叉树、二叉查找树、平衡二叉查找树、递归树和B 树。第6章介绍堆,以及堆的各种应用,包括堆排序、优先级队列、求Top K、求中位数和求百分位数。第7章介绍跳表、并查集、线段树和树状数组这些比较高级的数据结构。第8章介绍字符串匹配算法,包括BF算法、RK算法、BM算法、KMP算法、Trie树和AC自动机。第9章介绍图及相关算法,包括深度优先搜索、广度优先搜索、拓扑排序