《C Primer Plus(第6版)中文版》详细讲解了C语言的基本概念和编程技巧。 《C Primer Plus(第6版)中文版》共17章。第1章、第2章介绍了C语言编程的预备知识。第3章~第15章详细讲解了C语言的相关知识,包括数据类型、格式化输入/输出、运算符、表达式、语句、循环、字符输入和输出、函数、数组和指针、字符和字符串函数、内存管理、文件输入和输出、结构、位操作等。第16章、第17章介绍C预处理器、C库和高级数据表示。本书以丰富多样的程序为例,讲解C语言的知识要点和注意事项。每章末尾设计了大量复习题和编程练习,帮助读者巩固所学知识和提高实际编程能力。附录给出了各章复习题的参考答案和丰富的参考资料。 《C Primer Plus(第6版)中文版》可作为C语言的教材,适用于需要系统学习C语言的初学者,也适用于想要巩固C语言知识或希望进一步提高编程技
本书是备受广大读者推崇的数据结构与算法入门教程,已在GitHub获得超60k的 Star,并多次登顶GitHub Trending。书中系统介绍了数据结构与算法基础、复杂度分析、数组与链表、栈与队列、哈希表、树、堆、图、搜索、排序、分治、回溯、动态规划和贪心算法等核心知识,通过清晰易懂的解释和丰富的代码示例,以及生动形象的全彩插图和在线动画图解,揭示算法工作原理和数据结构底层实现,教授读者如何选择和设计算法来解决不同类型的问题,切实提升编程技能,构建完整的数据结构与算法知识体系。
深度学习和传统机器视觉技术相融合,可以大大提高AI 技术的效率和精度。本书分上、下两篇,共19 章内容,详细讲解了机器视觉及深度学习的理论和编程实践。上篇介绍理论算法。包括机器视觉的经典图像处理算法、深度学习的理论基础和目前常用的深度学习框架。下篇介绍编程环境及系统搭建。讲解了机器视觉图像处理算法及深度学习的编程工具 VC 、Python 和 OpenCV;利用 VC 和 Python 工具,搭建图像处理的工程界面;介绍了常用的9 种深度学习框架的获得方法、安装设置、工程创建,以及深度学习工程的编译、训练、评估与部署方法。每一个搭建的工程,都提供一套可下载的源代码程序,方便读者下载学习。本书理论与实践兼顾,可为从事机器视觉技术及人工智能研究和应用的工程技术人员提供帮助,也可供高等院校相关专业师生学习参考。
本书将数学理论与实例相结合,这些实例以*先进的通用机器学习框架为基础,由Python实现,向读者介绍更复杂的算法。全书共25章,包括机器学习模型基础、损失函数和正则化、半监督学习导论、高级半监督分类、基于图的半监督学习、聚类和无监督学习模型、高级聚类和无监督学习模型、面向营销的聚类和无监督学习模型、广义线性模型和回归、时序分析导论、贝叶斯网络和隐马尔可夫模型、*大期望算法、成分分析和降维、赫布学习、集成学习基础、高级提升算法、神经网络建模、神经网络优化、深度卷积网络、循环神经网络、自编码器、生成对抗网络导论、深度置信网络、强化学习导论和高级策略估计算法。
2011 年,C++标准委员会发布了ISO C++ 标准的一个重要修订版,即C++11 ,揭开了C++发展的新篇章。目前,许多程序设计竞赛和相关考试都已经提供了支持C++11 程序运行的编译器。本书的代码完全采用C++11 的语法进行编写,并力求帮助读者养成一种良好的C++11 代码编写风格,在程序设计竞赛和相关考试中能够快速而准确地编写代码。 除了介绍C++11 新特性之外,本书还会详细介绍各类基础的数据结构和算法。本书的具体内容包括5 个部分:C++11 基础、C++11 标准库简介、算法基础、数据结构基础、C++标准库进阶。本书主要面向计算机专业零基础的学习者,特别适合作为学习C++语言、数据结构与算法的入门书籍,也可作为计算机专业研究生入学考试复试上机考试、各类算法考试和算法竞赛的辅导书籍。 (责任编辑邮箱:jinacmp@163.com)
本书理论与实战相结合,以AliExpress网站为基础,全面介绍大型系统的总体技术方案、全球区域化部署技术、全球网络调度技术、性能优化,以及SRE在AliExpress的具体落地。涉及的内容有:领域建模、调度编排、就近服务、异地多活、全球容灾、数据一致性、用户迁移、性能优化、SRE治理方案、飞虎队作战手册等。本书既适合软件开发人员、运维人员、架构师阅读,也适合有软件开发基础的在校阅读。书中介绍的解决问题的思路和方法具有很高的参考价值。
本书共13章,第1章引入了微服务架构模式语言的概述;第2章解释了为什么软件架构很重要,并描述了可用于将应用程序分解为服务的模式;第3章介绍了微服务架构中强大的进程间通信的几种模式;第4章介绍Saga模