本书理论知识体系完备,由浅入深,系统性地介绍了深度学习模型的发展脉络,以及模型深度设计、模型宽度设计、模型通道维度设计、残差连接设计、分组卷积设计、多尺度与非正常卷积设计、多输入网络设计、时序神经网络设计、三维卷积网络设计、动态推理模型与注意力机制设计、生成对抗网络设计这10类主流的深度学习模型设计思想。同时,本书为各模型设计思想提供了大量的实例,供读者实战演练。?本书注重内容的完整性与实用性,既可以作为深度学习与计算机视觉初学者、相关专业的在校学生学习核心算法的书籍,也可以作为相关工程人员查阅相关技术的参考手册。?
《数据结构与算法分析:C语言描述(原书第2版)》中详细介绍了当前流行的论题和新的变化,讨论了算法设计技巧,并在研究算法的性能、效率以及对运行时间分析的基础上考查了一些高级数据结构,从历史的角度和近年的进展对数据结构的活跃领域进行了简要的概括。由于《数据结构与算法分析:C语言描述(原书第2版)》选材新颖,方法实用,题例丰富,取舍得当。《数据结构与算法分析:C语言描述(原书第2版)》的目的是培养学生良好的程序设计技巧和熟练的算法分析能力,使得他们能够开发出高效率的程序。从服务于实践又锻炼学生实际能力出发,书中提供了大部算法的C程序和伪码例程,但并不是全部。一些程序可从互联网上获得。《数据结构与算法分析:C语言描述(原书第2版)》是《DataStructuresandAlgorithmAnalysisiC》一书第2版的简体中译本。原书曾
《数据结构与算法分析:C语言描述(原书第2版)》中详细介绍了当前流行的论题和新的变化,讨论了算法设计技巧,并在研究算法的性能、效率以及对运行时间分析的基础上考查了一些高级数据结构,从历史的角度和近年的进展对数据结构的活跃领域进行了简要的概括。由于《数据结构与算法分析:C语言描述(原书第2版)》选材新颖,方法实用,题例丰富,取舍得当。《数据结构与算法分析:C语言描述(原书第2版)》的目的是培养学生良好的程序设计技巧和熟练的算法分析能力,使得他们能够开发出高效率的程序。从服务于实践又锻炼学生实际能力出发,书中提供了大部算法的C程序和伪码例程,但并不是全部。一些程序可从互联网上获得。《数据结构与算法分析:C语言描述(原书第2版)》是《DataStructuresandAlgorithmAnalysisiC》一书第2版的简体中译本。原书曾
《高性能计算系列丛书·CUDA并行程序设计:GPU编程指南》是CUDA并行程序设计领域全面、详实和具专业性的著作之一,由CUDA开发者社区技术总监亲自撰写,英伟达中国首批CUDA官方认证工程师翻译,详实地讲解了CUDA并行程序设计的技术知识点(平台、架构、硬件知识、开发工具和热点技术)和编程方法,包含大量实用代码示例,实践性非常强。 《高性能计算系列丛书·CUDA并行程序设计:GPU编程指南》共分为12章。第1章从宏观上介绍流处理器演变历史。第2章详解GPU并行机制,深入理解串行与并行程序,以辩证地求解问题。第3章讲解CUDA设备及相关的硬件和体系结构,以实现优CUDA程序性能。第4章介绍CUDA开发环境搭建和可用调试环境。第5章介绍与CUDA编程紧密相关的核心概念——网格、线程块与线程,并通过示例说明线程模型与性能的关系。第6章借助实例详细讲解了不