《深度学习》内容介绍:《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第 1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第 2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。 《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。 《动手学深度学习》内容简介:本书旨在向读者交付有关深度学习的交互式学习体验。书中不仅阐述深度学习的算法原理,还演示它们的实现和运行。与传统图书不同,本书的每一节都是一个可以
《神经网络与深度学习:案例与实践》是《神经网络与深度学习》(蒲公英书)的配套实践书,由复旦大学邱锡鹏教授和百度飞桨团队合作完成。本书在章节设计上和《神经网络与深度学习》一一对应,并以模型解读+案例实践的形式进行介绍。模型解读主要聚焦如何从零开始一步步实现深度学习中的各种模型和算法,并结合简单的任务来加深读者对模型和算法的理解;案例实践主要强调如何使用飞桨预定义API来更好地完成实际任务,会涉及一些数据预处理问题。建议读者将本书和《神经网络与深度学习》结合阅读,在动手实践中更深入地理解深度学习的模型和原理。
9787115600820 动手学深度学习(PyTorch版) 109.80 9787115584519 动手学强化学习 89.90 9787115618207 动手学机器学习 89.80 《动手学深度学习(PyTorch版)》 本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,第一部分介绍深度学习的基础知识和预备知识,并由线性模型引出最简单的神经网络 多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用
9787115461476 深度学习 168.00 9787115600820 动手学深度学习(PyTorch版) 109.80 《深度学习》 《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第 1部分介绍基本的数学工*和机器学习的概念,它们是深度学习的预备知识;第 2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些*有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。 《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不*有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。 《动手学深度学习(PyTorch版)》 本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有
《Transformer自然语言处理实战:使用Hugging Face Transformers库构建NLP应用》 本书涵盖了Transformer在NLP领域的主要应用。首先介绍Transformer模型和Hugging Face 生态系统。然后重点介绍情感分析任务以及Trainer API、Transformer的架构,并讲述了在多语言中识别文本内实体的任务,以及Transformer模型生成文本的能力,还介绍了解码策略和度量指标。接着深入挖掘了文本摘要这个复杂的序列到序列的任务,并介绍了用于此任务的度量指标。之后聚焦于构建基于评论的问答系统,介绍如何基于Haystack进行信息检索,探讨在缺乏大量标注数据的情况下提高模型性能的方法。最后展示如何从头开始构建和训练用于自动填充Python源代码的模型,并总结Transformer面临的挑战以及将这个模型应用于其他领域的一些新研究。 《自然语言处理实战:预训练模型应用及其产品化》 在过去几年中,自然语言
《ChatGPT原理实战》: 《ChatGPT原理实战》是一本系统梳理并深入解析ChatGPT核心技术、算法实现、工作原理、训练方法的著作,也是一本能指导你搭建专属ChatGPT和实现大模型迁移及私有化的著作。 《ChatGPT原理实战》得到了MOSS系统负责人邱锡鹏等多位专家的高度评价和鼎力推荐。具体地,通过《ChatGPT原理实战》你能了解或掌握以下知识: ChatGPT的工作流程和技术栈 ChatGPT的工作原理和算法实现 基于Transformer架构的一系列预训练语言模型的原理 强化学习的基础知识 提示学习与大模型涌现出的上下文学习、思维链 大模型的训练方法及常见的分布式训练框架 基于人工反馈的强化学习整体框架 从零搭建类ChatGPT模型,模拟完整的ChatGPT训练过程 《ChatGPT原理实战》集理论、实战和产业应用于一体,提供大量经详细注释的代码,
《电动汽车智能底盘技术路线图》由中国汽车工程学会线控制动与底盘智能控制工作组组织50 余家单位、160 多位专家,基于自主可控产业链的总目标,采取跟随发展和赶超发展结合、部件与底盘融合、乘用车与商用车
本书由全球知名的3位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。 《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。
《ChatGPT 驱动软件开发:AI 在软件研发全流程中的革新与实践》 这是一本讲解以ChatGPT/GPT-4为代表的大模型如何为软件研发全生命周期赋能的实战性著作。它以软件研发全生命周期为主线,详细讲解了ChatGPT/GPT-4在软件产品的需求分析、架构设计、技术栈选择、高层设计、数据库设计、UI/UX 设计、后端应用开发、Web 前端开发、软件测试、系统运维、技术管理等各个环节的应用场景和方法,让读者深刻地感受到ChatGPT/GPT-4在革新传统软件工程的方式和方法的同时,还带来了研发效率和研发质量的大幅度提升。 更为重要的是,本书能帮助架构师、开发工程师、数据库工程师、测试工程师、运维工程师、项目经理、产品经理、UI/UX工程师和技术管理者深入地理解ChatGPT/GPT-4的原理和应用,全面塑造他们在AI时代的核心竞争力,实现价值创新并形成竞争优势,为未来的发展奠
本书是人工智能专业基础全面的解读,作者陆汝钤院士在知识工程和基于知识的软件工程方面做了系统的、创造性的工作,是我国该领域研究的开拓者之一。倡导并主持完成了以软件的机械化生成和移植为目标的系列软件计划(XR计划),推动了当时国产机软件缺乏问题的解决。 本书首次把异构型DAI和机器辩论引进人工智能领域。研究出基于类自然语言理解的知识自动获取方法,把ICAI生成技术推进到以自动知识获取为特征的第三代,并开发出基于知识的应用软件自动生成技术。在形式语义学方面研究了逻辑语义、代数语义和分布式语义,证明了任意Horn子句集的模型论语义和小不动点语义的等价性;给出了能描述动态控制结构的基调式代数语义;把平面的Petri网扩展成多页的Petri/Riemann网(P/R网)作为进程模型,获得了演算的真并发结构。 对于希望学习了解人工
《这*是ChatGPT》 ChatGPT是OpenAI开发的人工智能聊天机器人程序,于2022年11月推出。它能够自动生成一些表面上看起来像人类写的文字,这是一件很厉害且出乎大家意料的事。那么, 它是如何做到的呢?又为何能做到呢?本书会大致介绍ChatGPT的内部机制,然后探讨一下为什么它能很好地生成我们认为有意义的文本。 《万物皆计算:科学奇才的探索之旅》 本书为斯蒂芬·沃尔弗拉姆的随笔集,汇集了其过去十余年不同场合的文章、讲稿等,以计算思维范式为中心,讲述了沃尔弗拉姆在科学、技术、艺术、哲学、商业等多个领域的 思想探索与实践。从为电影《降临》提供科学咨询、解决人工智能道德规范问题、寻找一个不寻常的多面体的来源、与外星人交流,到建立Mathematica 和Wolfram|Alpha, 再到寻找物理学的基本理论和探索π,本书捕捉到了
《Transformer自然语言处理实战:使用Hugging Face Transformers库构建NLP应用》 本书涵盖了Transformer在NLP领域的主要应用。首先介绍Transformer模型和Hugging Face 生态系统。然后重点介绍情感分析任务以及Trainer API、Transformer的架构,并讲述了在多语言中识别文本内实体的任务,以及Transformer模型生成文本的能力,还介绍了解码策略和度量指标。接着深入挖掘了文本摘要这个复杂的序列到序列的任务,并介绍了用于此任务的度量指标。之后聚焦于构建基于评论的问答系统,介绍如何基于Haystack进行信息检索,探讨在缺乏大量标注数据的情况下提高模型性能的方法。最后展示如何从头开始构建和训练用于自动填充Python源代码的模型,并总结Transformer面临的挑战以及将这个模型应用于其他领域的一些新研究。 《ChatGPT原理与实战:大型语言模型的算法、技术和私有化》 这是一本系统梳
《ChatGPT原理与实战:大型语言模型的算法、技术和私有化》 赞誉 前言 第1章 了解ChatGPT1 1.1 ChatGPT的由来1 1.1.1 什么是ChatGPT2 1.1.2 ChatGPT的发展历史2 1.2 ChatGPT的工作流程3 1.3 ChatGPT用例3 1.3.1 日常任务4 1.3.2 编写代码5 1.3.3 文本生成6 1.3.4 办公自动化9 1.4 本章小结10 第2章 ChatGPT原理解构11 2.1 背景知识11 2.1.1 自然语言处理的发展历程12 2.1.2 大型语言模型的发展历程14 2.2 ChatGPT同类产品18 2.2.1 BlenderBot 3.018 2.2.2 LaMDA20 2.2.3 Sparrow23 2.3 ChatGPT的工作原理25 2.3.1 预训练与提示学习阶段26 2.3.2 结果评价与奖励建模阶段28 2.3.3 强化学习与自我进化阶段28 2.4 算法细节29 2.4.1 标注数据29 2.4.2 建模思路30 2.4.3 存在的问题30 2.5 关于ChatGPT的思考31 2.6 本章小结32 第3章 预训练语言模型33 3.1 Transformer结构33 3.2 基于Encoder结构的模型
本书涵盖了自动化、电气工程及其自动化、机械工程及其自动化等本科专业中自动控制原理课程经典和现代部分的核心内容。主要包括反馈控制的基本概念、根据物理定律等建立控制对象模型、控制对象模型的状态空间表示、单输入单输出控制系统的响应特性和主要性能指标、非线性系统分析的描述函数法和相平面法等。本书作者具有十分丰富的教学经验,已出版过多本系统分析与设计方面的。本书可作为高等院校自动化、电气工程等相关专业的本科生,也可作为相关领域工程技术人员的参考书。
(1)本书内容全面,详细介绍了经典自动控制理论、状态空间控制理论、离散数字系统控制理论技术和非线性系统分析的基本知识。整本书结构清晰明了、内容丰富,融会贯通了由基本概念到实际应用的思想。本书浅显易懂,数学理论分析过程翔实,读者只需要的微分方程、线性代数和拉普拉斯变换基础就可以理解其中的知识,可以作为大多数高校的教材。(2)每章的结构安排清晰合理。每章的简介(Introduction)部分都提纲挈领地给出了章节的知识背景和控制要求,以及章节的主要内容结构分布。在每章的各个小节,作者首先详细介绍各种理论、技术,紧接着给出翔实的例子,避免了读者局限于抽象的理论。而每章末尾对关键的知识点及时地进行了小结,有助于加深读者对所学知识的了解,形成完整的知识理论体系。(3)本书较早地引入了MATLAB的使用,并且在大
《AI绘画大师:Stable Diffusion快速入门与实战技巧 》 本书共9章,利用易学易用的Stable Diffusion为绘画设计从业者和爱好者提高生产力。一方面,提供350幅实操图解,一步步拆解,让读者掌握接到不同需求时如何使用Stable Diffusion出图。另一方面,提供游戏、电商、插画、建筑行业和头像设计等副业领域的实操案例与技巧,满足游戏角色、原画、图标、商品展示图、插画、室内设计和建筑设计的出图需求。结合18个主业和副业场景,提高生产力,实现AI商业化。 《Prompt魔法:提示词工程与ChatGPT行业应用》 这是一本能指引我们每个人赢在AI时代的著作,它将教会我们在各种场景中熟练使用ChatGPT等AI工具和编写提示词,大幅提升我们的工作效率,让我们实现AI普惠,成为AI高手。 本书的几位作者都是AI领域的技术专家和应用布道者,本书是他们丰富实践经验的总结。阅读本书
《Prompt魔法:提示词工程与ChatGPT行业应用》 这是一本能指引我们每个人赢在AI时代的著作,它将教会我们在各种场景中熟练使用ChatGPT等AI工具和编写提示词,大幅提升我们的工作效率,让我们实现AI普惠,成为AI高手。 本书的几位作者都是AI领域的技术专家和应用布道者,本书是他们丰富实践经验的总结。阅读本书,你将获得以下知识和技能: 认识AIGC将给社会和个体带来的深刻影响及其背后的本质,包括AIGC如何引发生产效率革命、如何重新定义脑力劳动、如何调整社会分工、如何重新分配社会价值等; ChatGPT/GPT-4、文心一言、Midjourney、Stable Diffusion、DALL·E3等主流AIGC工具的配置、使用和选型; 提示词(Prompt)编写的入门指南、基本原则、黄金公式和进阶技巧; AIGC辅助文案写作、文稿翻译、数据分析、邮件撰写、PPT制作、工作总结、知识整理、图片生成等; 程序设
《Python深度学习:基于PyTorch 第2版》 这是一本能指导读者快速掌握PyTorch和深度学习的著作,从PyTorch的原理到应用,从深度学习到强化学习,提供了全栈解决方案。 第1版上市后销量和口碑俱佳,是深度学习领域的畅销书,被誉为PyTorch领域的标准著作。第2版在第1版的基础上,去芜存菁,与时俱进,根据PyTorch新版本全面升级,技术性、实战性、丰富性、针对性、易读性均得到了进一步提升,必能帮助读者更轻松、更高效地进入深度学习的世界。 全书一共19章,在结构上分为三大部分: 部分(第1~4章) PyTorch基础 首先有针对性地讲解了Python和PyTorch的基石NumPy中的关键知识,然后详细讲解了PyTorch的基础知识、神经网络工具箱和数据处理工具箱等内容,帮助读者快速了解和掌握PyTorch。 第二部分(第5~10章) 深度学习基础 依次讲解了机器学习、视觉处理、自然语言处理
《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。
《Python自然语言处理实战:核心技术与算法》 自然语言处理是一门融语言学、计算机科学、数学于一体的学科,比较复杂,学习门槛高,但本书巧妙地避开了晦涩难懂的数学公式和证明,即便没有数学基础,也能零基础入门。 本书专注于中文的自然语言处理,以Python及其相关框架为工具,以实战为导向,详细讲解了自然语言处理的各种核心技术、方法论和经典算法。三位作者在人工智能、大数据和算法领域有丰富的积累和经验,是*、前明略数据和七牛云的资深专家。同时,本书也得到了*达摩院高级算法专家、七牛云AI实验室Leader等专家的高度评价和鼎力推荐。 全书一共11章,在逻辑上分为2个部分: *部分(第1、2、11章) 主要介绍了自然语言处理所需要了解的基础知识、前置技术、Python科学包、正则表达式以及Solr检索等。 第二部分(第5-10章) 第3~5章讲解了词