ChatGPT 是目前市场上最为优秀的 AI 工具之一,它以强大的信息整合、知识链接、编程和语言理解等能力惊艳了全球,被广泛用于各行各业,以提高生产力。那么如此强大的 AI 工具该怎样使用呢? 《ChatGPT 实操应用大全(全视频 彩色版)》应运而生,这是一本关于 ChatGPT 全场景使用秘籍,为读者呈现 ChatGPT的 150种不同的使用方法和技巧,带读者深度解锁 ChatGPT的功能,释放出无限的创造力。它能够帮助用户轻松解决各种实际问题,极大地提高工作效率和生产力。不论是短视频内容创作、数据分析、日常办公、论文写作、金融投资,还是翻译、写代码等任务,本书都能够满足用户的需求。如果想要更好地利用 ChatGPT 功能,就阅读本书。本书主要涵盖 ChatGPT 的注册与登录、基本功能的使用、提示词用法、150 种应用场景、参数指令与 API 开发以及ChatGPT插件等内容,内容通
本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,部分介绍深度学习的基础知识和预备知识,并由线性模型引出简单的神经网络 多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用。 本书同时覆盖深度学习的方法和实践,主要面向在校大学生、技术人员和研究人员。阅读本书需要读者了解基本的Python编程知识及预备知识中描
本书全面、深入地探讨了人工智能(AI)领域的理论和实践,以统一的风格将当今流行的人工智能思想和术语融合到引起广泛关注的应用中,真正做到理论和实践相结合。全书分7个部分,共28章,理论部分介绍了人工智能研究的主要理论和方法并追溯了两千多年前的相关思想,内容主要包括逻辑、概率和连续数学,感知、推理、学习和行动,公平、信任、社会公益和安全;实践部分完美地践行了 现代 理念,实际应用选择当下热度较高的微电子设备、机器人行星探测器、拥有几十亿用户的在线服务、AlphaZero、人形机器人、自动驾驶、人工智能辅助医疗等。本书适合作为高等院校人工智能相关专业本科生和研究生的教材,也可以作为相关领域专业人员的参考书。
本书是一本有思维方法论启示的书;是一本站在历史的高度, 正面思考科技力量的书;是一本充满想象与预言,但又不失科学论证的书。本书提供了一个崭新的视角:21世纪既是数百年以来科技、创意的顶点,又是对人类终极命运真挚的愿景。 本书特点:奇特与警示的结论,书中六个纪元的划分奇特又富于哲理;严谨与独特的论述方法,通过分析科学发展趋势,演绎并预测未来;警世之语与探讨性对话,通过智者的眼睛去审视自然、科学以及世界;章尾与未来的对话,是一种思想的博弈:通过设想中的未来去理解当今的技术发展和进化中的人类。 本书论述严谨,案例丰富,深入阐释了 奇点 作为一种思潮,其在世界范围内所产生的广泛影响,并介绍了其在哲学、科学、技术、艺术等各个方面所展示的独特魅力。
《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。 《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。
这是一部从技术原理、行业应用、商业价值、投资创业、发展趋势5个维度讲解AI Agent的著作,具有科普书和商业书的双重属性。 本书首先详细介绍了AI Agent的技术路径及其在11大领域的应用,丰富的应用案例可以帮助读者深度理解AI Agent产品形态与服务方式;然后深入探讨了AI Agent的商业价值与商业生态,并对AI Agent的企业级应用和投资创业做了很多思考与总结,能够带给读者应用与创业方面的启发。本书将技术、应用及商业理念融会贯通,理论性与实用性兼具,是一本适合业内外人士快速了解AI Agent、提升行业认知的综合指南,得到了很多行业人士、专家及创业者的一致好评。 全书共15章,分为四个部分: 第一部分(第1~3章) 技术认知 首先,介绍AI Agent的概念、特征、定义、发展历程、分类方式,以帮助读者全面认知AI Agent;然后,介绍AI Agent核心技术,展示其技
内容简介这是一本人人都能读懂的大模型综合指南,既是一本大模型的科普书,又是一本大模型的商业书。由中国电信研究院天翼智库官方出版,从核心技术、基础设施、商业应用、产业体系、安全治理5个维度全面讲解了大模型。语言上通俗易懂,内容上深入浅出,呈现上图文并茂,给读者良好阅读体验的同时,让读者对大模型的理解事半功倍!无论你是AI工程师,还是完全没有IT技术背景的爱好者;无论你是一线的从业人员,还是企业的管理者和决策者,你都能通过本书系统理解和掌握大模型,从而深刻认识大模型的核心价值和应用潜力,把握住大模型带来的变革和商机。通过阅读本书,我们每个人都能从中收获以下知识:(1)AI的本质和AI发展的4个阶段;(2)大模型的核心技术和大模型的技术进化路线;(3)大模型的算力基础设施和数据基础设施;(4)基座
9787115630940 做好课题申报:AI辅助申请书写作 69.80 9787115632784 高效写论文:AI辅助学术论文写作 69.80 《做好课题申报:AI辅助申请书写作》 申报课题是高校教师和科研工作者十分重要的工作内容。 本书采用倒金字塔思路,对课题申请书进行了拆解,并系统介绍了如何利用 AI 辅助做好课题申报工作。本书第一章对课题申报进行了概述,分别介绍了各级别课题的申报公告和申请书及活页。第二章~第十二章分别介绍如何利用 AI 辅助开展课题申报的具体工作,主要有寻找选题、分析课题立项选题,以及课题论证相关部分的写作,包括研究背景写作、学术史梳理及研究动态写作、研究价值写作、阐释研究对象与框架思路写作、课题的重点难点写作、主要目标写作、研究计划及其可行性写作、其他部分写作。本书讲解全面、细致,并采用案例直观展示,方便读者学习。 《高
本书前半部分介绍强化学习的重要思想和基础知识,后半部分介绍如何将深度学习应用于强化学习,遴选讲解了深度强化学习的最新技术。全书从最适合入门的多臂老虎机问题切入,依次介绍了定义一般强化学习问题的马尔可夫决策过程、用于寻找最佳答案的贝尔曼方程,以及解决贝尔曼方程的动态规划法、蒙特卡洛方法和TD方法。随后,神经网络和Q学习、DQN、策略梯度法等几章则分别讨论了深度学习在强化学习领域的应用。本书延续 鱼书 系列的风格,搭配丰富的图、表、代码示例,加上轻松、简明的讲解,让人循序渐进地理解强化学习中各种方法之间的关系,于不知不觉中登堂入室。
机器人开发是一项复杂的系统工程,ROS 2为智能机器人开发提供了强有力的支持,极大地提高了机器人软件开发效率。本书首先对ROS 2的基础概念、通信机制、常用库和工具进行介绍,带领读者入门ROS 2机器人开发;接着引导读者完成移动机器人的建模和仿真、建图和导航、自定义控制器和规划器等一系列实践;然后在真机实战环节,通过制作一个基于ROS 2的真实机器人,帮助读者打通仿真与真机之间的壁垒;最后,本书深入讲解了ROS 2进阶使用的相关知识,为读者进一步在实战中使用ROS 2进行机器人开发打下夯实基础。考虑读者基础,书中示例均以C 和Python两种语言实现,同时加入了关于C 新特性、Git工具、多线程和回调函数等基础知识的讲解。
本书详尽地覆盖了多模态大模型的算法原理和应用实战,提供了丰富的微调技术细节和实际案例,适合对多模态大模型有兴趣的技术人员深入学习及应用。 本书分为两篇: 算法原理篇 详细介绍了先进的深度学习模型,包括Transformer、GPT系列、深度生成模型,从基本架构、训练方法到特定应用,包括但不限于Seq2Seq结构、位置编码、注意力机制、残差连接、变分自编码器、GAN、ViT、CLIP、Stable Diffusion、各模型训练实践的知识点。此外,探讨了预训练模型的涌现能力、模型参数和通信数据量的估算,以及分布式训练的各种技术,如数据并行、模型并行和混合精度训练等。 应用实战篇 聚焦于深度学习模型的实际应用,特别是文本和图像生成,以及代码生成的应用实战。通过具体实战项目,如利用Stable Diffusion进行图像生成和Code Llama进行代码生成,提供了微调技术的详细细
本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络的优化与应用、EM算法及其应用、集成学习的过拟合现象研究、度量学习及其应用。书中包含简答题、计算题和编程题,涵盖不同难度级别,机器学习初学者可以通过这些习题深入了解和巩固教材的关键概念,对机器学习有一定基础的读者也可以通过习题发现对一些知识点不同角度的解读,为后续机器学习的深入研究打下基础
内容简介这是一本全面讲解RAG技术原理、实战应用与系统构建的著作。作者结合自身丰富的实战经验,详细阐述了RAG的基础原理、核心组件、优缺点以及使用场景,同时探讨了RAG在大模型应用开发中的变革与潜力。书中不仅揭示了RAG技术背后的数学原理,还通过丰富的案例与代码实现,引导读者从理论走向实践,轻松掌握RAG系统的构建与优化。无论你是深度学习初学者,还是希望提升RAG应用技能的开发者,本书都将为你提供宝贵的参考与指导。通过阅读本书,你将掌握以下知识:?透彻理解RAG的召回和生成模块算法?高级RAG系统的技巧?RAG系统的各种训练方式方法?深入了解RAG的范式变迁?实战0基础搭建RAG系统?实战高级RAG系统微调与流程搭建
本书通过Python示例介绍人工智能技术在金融数据分析中的应用。你将了解如何运用神经网络、强化学习等深度学习技术预测金融市场。本书分为六大部分。部分介绍人工智能算法的核心概念,包括监督学习和神经网络,并描绘超级人工智能愿景。第二部分讨论机器学习技术在金融市场中的应用。第三部分更进一步,讨论如何利用神经网络和强化学习技术解决金融市场中的统计失效问题。第四部分详述如何利用算法交易解决统计失效问题。第五部分展望未来,探讨人工智能会如何改变金融业。第六部分给出以Python实现的神经网络,可用于时间序列预测。
本书适合任何想要深入了解深度学习这个迷人领域的人,您不需要具备高级数学和编程知识就可以掌握其根本原理。如果您想知道这些工具是如何工作的,并学会自己使用它们,答案尽在书中。而且,如果您已经准备好编写自己的程序,那么随附的Github存储库中还有大量补充的Python笔记本可以帮助您。 本书讲解语言通俗易懂,包含大量的的彩色插图和具有启发性的类比,以及丰富的现实世界的例子,深入地地解释了深度学习的关键概念,包括: 文本生成器如何创建新颖的故事和文章。 深度学习系统如何在人类游戏中学习游戏并获胜。 图像分类系统如何识别照片中的物体或人。 如何以对日常生活有用的方式思考概率。 如何使用构成现代人工智能核心的机器学习技术。 各种各样的智力冒险家都可以使用本书中涵盖的强大思想来构建智能系统,帮助我们更好地理
深度学习框架中蕴藏着惊人的技术和有趣的机制,本书旨在揭开这些技术和机制的神秘面纱,帮助读者正确理解技术,体会它们的有趣之处。为此,本书会带领读者从零开始创建一个深度学习框架 DeZero。DeZero 是本书原创的框架,它用少的代码实现了现代深度学习框架的功能。本书分60 个步骤来完成这个框架,在此过程中,读者会加深对PyTorch、TensorFlow 和Chainer 等现代深度学习框架的理解,看清深度学习框架的本质。 本书沿袭《深度学习入门:基于Python 的理论与实现》的风格,语言通俗,代码简洁,讲解详细。在自制框架的过程中,读者还能进一步巩固Python 编程和软件开发相关的知识。 本书适合对深度学习框架感兴趣的读者阅读。
本书涵盖了Transformer在NLP领域的主要应用。首先介绍Transformer模型和Hugging Face 生态系统。然后重点介绍情感分析任务以及Trainer API、Transformer的架构,并讲述了在多语言中识别文本内实体的任务,以及Transformer模型生成文本的能力,还介绍了解码策略和度量指标。接着深入挖掘了文本摘要这个复杂的序列到序列的任务,并介绍了用于此任务的度量指标。之后聚焦于构建基于评论的问答系统,介绍如何基于Haystack进行信息检索,探讨在缺乏大量标注数据的情况下提高模型性能的方法。最后展示如何从头开始构建和训练用于自动填充Python源代码的模型,并总结Transformer面临的挑战以及将这个模型应用于其他领域的一些新研究。
9787115617149 秒懂AI写作:让你轻松成为写作高手 59.80 9787115620460 秒懂AI提问:让人工智能成为你的效率神器 59.80 《秒懂AI写作:让你轻松成为写作高手》 《秒懂AI写作:让你轻松成为写作高手》针对职场、学习、生活、艺术创作领域常见的40余种写作应用场景,遵循 场景 方法 总结 的框架,详细介绍了如何正确利用AI完成多种写作任务,并归纳出使用AI写作的方法和技巧。 《秒懂AI写作:让你轻松成为写作高手》分为6章。第1章通过5个步骤、6大场景介绍了如何驾驭AI完成多种类型的写作任务;第2章至第6章分别详细介绍了在职场应用文写作、商业营销文案写作、新媒体写作、调查研究与论文写作、生活艺术创作等多种场景中使用AI写作的技巧,帮助读者充分发挥AI的潜力,让写作变得简单有趣。 《秒懂AI写作:让你轻松成为写作高手》适合各行业有写作需求的人群阅读
人工智能时代,数字数据的爆炸式增长推动了人们对使用机器学习(ML)的交易策略相关知识的需求。《机器学习在算法交易中的应用(第2版)》就以Python为基本工具,从全局、战略的视角介绍了相关的概念,以及机器学习在交易策略设计和执行中的价值及实践运用。全书分4部分,其中第1部分主要介绍基于机器学习的交易策略的基础知识,该部分内容围绕机器学习算法以及交易策略相关的数据展开,概述了如何有效捕获数据信号内容、如何准确提取特征,以及如何基于这些数据优化算法评估投资组合。第2部分重点阐述了在端到端工作流环境中,一些基本的监督学习、无监督学习是如何为交易策略的制定提供帮助的。第3部分是自然语言处理,这部分引入了无监督学习算法,力求从文本数据这种关键的另类数据中高质量地提取信号。第4部分通过TensorFlow和PyTorch,重点介绍深
本书深入阐述了大语言模型的基本概念和算法、研究前沿以及应用,涵盖大语言模型的广泛主题,从基础到前沿,从方法到应用,涉及从方法论到应用场景方方面面的内容。首先,本书介绍了人工智能领域的进展和趋势;其次,探讨了语言模型的基本概念和架构、Transformer、预训练目标和解码策略、上下文学习和轻量级微调、稀疏专家模型、检索增强型语言模型、对齐语言模型与人类偏好、减少偏见和有害性以及视觉语言模型等内容;最后,讨论了语言模型对环境的影响。 本书内容全面、系统性强,适合高年级本科生和研究生、博士后研究人员、讲师以及行业从业者阅读与参考。
计算机视觉有多先进?开一开特斯拉就知道了。深度学习技术已在人脸识别、交互式仿真和医学成像方面取得令人兴奋的突破,但让人心潮澎湃的当属自动驾驶技术。如今,自动驾驶的汽车已经能在高速路上畅意驰骋并对各种复杂路况做出灵活反应了。 计算机如何 理解 它所 看到 的东西?本书试图将深度学习应用于计算机视觉以回答该问题。本书仅用高中代数知识阐明视觉直觉背后的概念。你将了解如何使用深度学习架构来构建视觉系统应用程序,以实现图像生成和人脸识别功能。 主要内容 ●图像分类和目标检测 ●先进的深度学习架构 ●迁移学习与生成对抗网络 ●DeepDream和神经风格迁移 ●视觉嵌入和图像搜索
本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的基础知识。 本书总计9章,深入浅出地介绍了深度学习的理论与算法基础,从理论到实战全方位展开。前三章旨在帮助读者快速入门,介绍了必要的数学概念和工具的用法。后六章沿着深度学习的发展脉络,从最简单的多层感知机开始,讲解了深度神经网络的基本原理、常见挑战、优化算法,以及三大典型模型(基础卷积神经网络、基础循环神经网络和注意力神经网络)。 本书系统全面,深入浅出,且辅以生活中的案例进行类比,以此降低学习难度,帮助读者迅速掌握深度学习的基础知识。本书适合有志于投身人工智能领域的人员阅读,也适合作为高等院校人工智能专业的教学用书。