《AI通识课12讲:走进人工智能》是一本革新认知的AI科普读物!作者以从深蓝到GPT 的跨越式发展为引,手把手拆解大语言模型如何学习、推理与创作。全书以12 讲硬核通识课串联起AI感知、交互、脑机接口、量子计算等关键技术,同步解析AGI 和ASI 颠覆性趋势对教育、就业及社会结构的冲击。书中案例丰富,从AI 绘画速成到游戏开发实战,再到AI 辅助教学,既提供 用AI 提效 的落地工具,又启发 与AI 共存 的深度思考。 本书特别适配青少年 AI 学习三阶段:从零基础了解 AI 的神奇,到掌握底层运 行原理,再到解锁跨学科应用,家长和教师也能从中获取 AI 教育的相关知识。翻 开本书,掌控人机协作时代的生存法则!
Josh Starmer博士在YouTube的账号 StatQuest 视频总观看量突破7000万次(2024年11月统计的数据),他帮助全世界各行各业的人赢得数据科学竞赛、通过考试、顺利毕业、成功求职或实现晋升,因此被大家誉为 硅谷的守护神 。他那独特的图文表达形式和幽默的语言风格深受观众喜爱,这本《StatQuest图解机器学习》结合了他创新的视觉呈现方式,深入浅出地阐释了机器学习的基础和高阶知识,是一本轻松理解机器学习的 漫画书 。本书前3章着重介绍了机器学习的整体框架和核心思想,自第4四章起,逐一探讨了各种机器学习算法:从基础的线性回归(第4章)和逻辑回归(第6章)到朴素贝叶斯(第7章)和决策树(第10章),最后介绍了支持向量机(第11章)和神经网络(第12章)。随着读者学习的深入,第5章、第8章和第9章分别介绍了机器学习的进阶知识和实用技巧,如梯度下
机器学习是计算机科学的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面. 全书共 16 章,大致分为 3 个部分:第 1 部分(第 1~3 章)介绍机器学习的基础知识;第 2 部分(第 4~10 章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第 3 部分(第 11~16 章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等. 每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索. 本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考.
深度学习和大模型技术在推荐系统领域掀起了一场技术革命,本书从深度学习推荐模型、Embedding技术、大模型、AIGC、模型工程实现、业界前沿实践等几个方面介绍了这场技术革命中的主流技术要点。 本书既适合推荐系统、计算广告和搜索领域的从业者阅读,也适合人工智能相关专业的本科生、研究生、博士生阅读,帮助建立深度学习推荐系统的技术框架,通过学习前沿案例,加强深度学习理论与推荐系统工程实践的融合能力。
机器人开发是一项复杂的系统工程,ROS 2为智能机器人开发提供了强有力的支持,极大地提高了机器人软件开发效率。本书首先对ROS 2的基础概念、通信机制、常用库和工具进行介绍,带领读者入门ROS 2机器人开发;接着引导读者完成移动机器人的建模和仿真、建图和导航、自定义控制器和规划器等一系列实践;然后在真机实战环节,通过制作一个基于ROS 2的真实机器人,帮助读者打通仿真与真机之间的壁垒;最后,本书深入讲解了ROS 2进阶使用的相关知识,为读者进一步在实战中使用ROS 2进行机器人开发打下夯实基础。考虑读者基础,书中示例均以C 和Python两种语言实现,同时加入了关于C 新特性、Git工具、多线程和回调函数等基础知识的讲解。
本书系统地讲解了大模型技术、训练算法(包括强化学习、RLHF、GRPO、DPO、SFT与CoT蒸馏等)、 微调与对齐、效果优化及其实践。全书以大语言模型(LLM)为主线,绝大部分内容也适用于多模态大模型(VLM 和MLLM)。本书面向AI算法与工程领域的从业者、相关专业的学生,以及希望深入了解大模型技术、拥抱AI与大模型浪潮的跨行业读者。
本书将从强化学习最基本的概念开始介绍,将介绍基础的分析工具包括贝尔曼公式和贝尔曼最优公式,之后会推广到基于模型的和无模型的强化学习算法,最后会推广到基于函数逼近的强化学习方法。本书强调从数学的角度接引入概念、分析问题、分析算法。并不强调算法的编程实现,因为目前已经有很多这方面的书籍,本书将不再重复造轮子。 本书面向对强化学习感兴趣的本科生、研究生、研究人员和企业研究所从业者。 它不需要读者有任何关于强化学习的背景,因为它会从最基本的概念开始介绍。如果读者已经有一些 强化学习的背景,这本书也可以帮助他们更深入地理解一些问题或者带来新的视角。 本书要求读者具备一定的概率论和线性代数知识。本书的附录中包含了一些必需的数学基础知识。
《图解人工智能》从基础概念、历史沿革、基础算法、代表性应用、**研究进展、跨学科交叉成果等多个方面深入介绍人工智能。为满足不同程度学习者的学习需求,全书以图片为主并辅以少量文字说明,每节配有 小清爱提问 在线视频,具有初等阅读能力的读者(包括中小学生)可以轻松获得人工智能的基础知识和全局视野;每一节还包括扩展学习资料、深入阅读材料和编程实践资源供高等阅读能力的读者(包括大学生和教师)自学提高。为配合课堂教学,全书每一节都配有PPT课件、附加视频资料、互动演示程序等教学资源。对应不同知识背景的读者,本书有速读、专业、教学3种建议阅读模式。 期待更多人能借此书产生对人工智能学科的探索热情! 本书封面贴有清华大学出版社防伪标签,无标签者不得销售。版权所有,侵权必究。
本书聚焦生成式人工智能的崛起与发展,全面剖析大模型的技术原理、产业影响和社会意义。全书分为四篇:背景篇解读大模型发展历程中的里程碑事件;技术篇探讨大模型训练与应用技术中的关键挑战及应对策略;产业篇关注大模型为千行百业的数字化转型与高质量发展带来的积极作用,并指明潜在问题;社会篇则从跨学科视角及人类命运的高度,反思大模型及人工智能技术对人类社会发展的长期影响。 本书旨在呈现大模型时代的多维图景,启发读者深度思考。本书既适合人工智能及相关行业的技术人员和管理者阅读,也适合政府机关及企事业单位的工作人员和研究者参考,还可以作为对大模型感兴趣的普通人群的通识读本。
这是一部从技术原理、行业应用、商业价值、投资创业、发展趋势5个维度讲解AI Agent的著作,具有科普书和商业书的双重属性。 本书首先详细介绍了AI Agent的技术路径及其在11大领域的应用,丰富的应用案例可以帮助读者深度理解AI Agent产品形态与服务方式;然后深入探讨了AI Agent的商业价值与商业生态,并对AI Agent的企业级应用和投资创业做了很多思考与总结,能够带给读者应用与创业方面的启发。本书将技术、应用及商业理念融会贯通,理论性与实用性兼具,是一本适合业内外人士快速了解AI Agent、提升行业认知的综合指南,得到了很多行业人士、专家及创业者的一致好评。 全书共15章,分为四个部分: 第一部分(第1~3章) 技术认知 首先,介绍AI Agent的概念、特征、定义、发展历程、分类方式,以帮助读者全面认知AI Agent;然后,介绍AI Agent核心技术,展示其技
本书是一本全面探索DeepSeek大语言模型应用的实用指南,涵盖了近200个精心设计的实用案例,以 场景思维 为核心,从用户实际需求出发,系统地展示了DeepSeek如何在日常工作、学习和生活的各个方面发挥智能助手的作用。 全书共分为20章,内容丰富且有层次: (1)从基础工具使用和提示词工程入门,到内容创作、知识工作、创意设计等应用场景,涵盖了多个专业领域(医疗、金融、法律、心理)的深度应用。 (2)介绍了日常生活、创业自媒体、行业赋能的多维度实践,提供了API集成方案和30个精选高频场景的深度解析; (3)每个实例都针对特定用户群体的痛点和需求,提供了具体、可操作的解决方案,帮助读者快速掌握如何将DeepSeek融入工作流程,真正实现AI赋能。 书中不仅关注 如何使用 ,更着眼于 为何使用 和 何时使用 ,帮助读者建立对AI辅助工具的系统性
《DeepSeek 从入门到精通(微课视频版) 提示词设计 多场景应用 工具深度融合》 是一本系统讲解大模型 DeepSeek 应用方法的实用指南,内容涵盖从入门操作、提示词设计、本 地与云端部署到上百种实际场景应用,以及AI 智能体设计,全面展示了 DeepSeek 在办公、写作、 编程、教育、创意等领域的强大能力。全书结构清晰,配合丰富案例与实操技巧,帮助读者快 速掌握与大模型高效交互的方法。 本书最大特色在于实用性与前瞻性并重,既有提示词设计的系统讲解,提供100 提示词模 板,又有 DeepSeek 与 WPS、Word、Excel、Xmind、剪映等常用软件的深度融合案例,真正实 现AI 赋能日常工作与创作。无论你是职场人士、内容创作者、教师学生,还是对大模型感兴趣 的开发者,本书都将为你提供可操作、可落地的指导,助你在 AI 时代实现效率与创意的双重飞跃。
内容简介这是一本人人都能读懂的大模型综合指南,既是一本大模型的科普书,又是一本大模型的商业书。由中国电信研究院天翼智库官方出版,从核心技术、基础设施、商业应用、产业体系、安全治理5个维度全面讲解了大模型。语言上通俗易懂,内容上深入浅出,呈现上图文并茂,给读者良好阅读体验的同时,让读者对大模型的理解事半功倍!无论你是AI工程师,还是完全没有IT技术背景的爱好者;无论你是一线的从业人员,还是企业的管理者和决策者,你都能通过本书系统理解和掌握大模型,从而深刻认识大模型的核心价值和应用潜力,把握住大模型带来的变革和商机。通过阅读本书,我们每个人都能从中收获以下知识:(1)AI的本质和AI发展的4个阶段;(2)大模型的核心技术和大模型的技术进化路线;(3)大模型的算力基础设施和数据基础设施;(4)基座
本书结合人形机器人研究中各类先进方法,系统地介绍了驱动人形机器人运动的基础知识、推导过程以及应用案例,阐述了人形机器人的运动学、动力学表示方法,解释了ZMP的概念及其与地面反作用力的关系,描述了人形机器人双足行走行为的生成和控制方法,并拓展了其他多种动作的实现方法,最后介绍了动力学建模、仿真和高效动力学的计算方法。
虽然很多深度学习工具都使用Python,但PyTorch 库是真正具备Python 风格的。对于任何了解NumPy 和scikit-learn 等工具的人来说,上手PyTorch 轻而易举。PyTorch 在不牺牲高级特性的情况下简化了深度学习,它非常适合构建快速模型,并且可以平稳地从个人应用扩展到企业级应用。由于像苹果、Facebook和摩根大通这样的公司都使用PyTorch,所以当你掌握了PyTorth,就会拥有更多的职业选择。 本书是教你使用 PyTorch 创建神经网络和深度学习系统的实用指南。它帮助读者快速从零开始构建一个真实示例:肿瘤图像分类器。在此过程中,它涵盖了整个深度学习管道的关键实践,包括 PyTorch张量 API、用 Python 加载数据、监控训练以及将结果进行可视化展示。 本书主要内容: (1)训练深层神经网络; (2)实现模块和损失函数; (3)使用 PyTorch Hub 预先训练的模型; (4)探索在 Jupyt
本书是深度学习领域的入门教材,系统地整理了深度学习的知识体系,并由浅入深地阐述了深度学习的原理、模型以及方法,使得读者能全面地掌握深度学习的相关知识,并提高以深度学习技术来解决实际问题的能力。 全书共15章,分为三个部分。 分为机器学习基础:第1章是绪论,介绍人工智能、机器学习、深度学习的概要,使读者全面了解相关知识;第2~3章介绍机器学习的基础知识。 第二部分是基础模型:第4~6章分别讲述三种主要的神经网络模型:前馈神经网络、卷积神经网络和循环神经网络;第7章介绍神经网络的优化与正则化方法;第8章介绍神经网络中的注意力机制和外部记忆;第9章简要介绍一些无监督学习方法;第10章介绍一些模型独立的机器学习方法,包括集成学习、自训练、协同训练、多任务学习、迁移学习、终身学习、元学习等。 第三部分
本书详尽地覆盖了多模态大模型的算法原理和应用实战,提供了丰富的微调技术细节和实际案例,适合对多模态大模型有兴趣的技术人员深入学习及应用。 本书分为两篇: 算法原理篇 详细介绍了先进的深度学习模型,包括Transformer、GPT系列、深度生成模型,从基本架构、训练方法到特定应用,包括但不限于Seq2Seq结构、位置编码、注意力机制、残差连接、变分自编码器、GAN、ViT、CLIP、Stable Diffusion、各模型训练实践的知识点。此外,探讨了预训练模型的涌现能力、模型参数和通信数据量的估算,以及分布式训练的各种技术,如数据并行、模型并行和混合精度训练等。 应用实战篇 聚焦于深度学习模型的实际应用,特别是文本和图像生成,以及代码生成的应用实战。通过具体实战项目,如利用Stable Diffusion进行图像生成和Code Llama进行代码生成,提供了微调技术的详细细
本书系统地探讨了软件工程从 1.0 到 3.0 的演进历程,深入剖析了软件工程 3.0 的新范式及其核心特征。书中详细介绍了软件工程 3.0 的实施策略和路线图,以及提示工程、RAG、智能体、数据治理、模型工程和安全治理等核心能力的建设。通过对需求分析、架构设计、UI 生成、结对编程、测试智能化和运维监控等关键环节的实践案例分析,全面重塑了软件开发生命周期。此外,书中还对软件工程的未来进行了展望,探讨了多模态技术和 AGI(通用人工智能)等对软件研发的深远影响。 本书适合软件研发管理人员(包括研发总经理、技术经理、项目经理、测试经理等)、 软件工程师、软件测试工程师,以及对软件工程智能化转型感兴趣的读者阅读参考。
本书生动地讲述了底层视觉的发展历史,总结了人工智能前沿的最新成果,揭示了高清大片背后的科学奥秘,展现了实事求是和永无止境的科学家精神。 同时,附有作者的科研感悟和心路历程,富有启发性。 本书适合理工科专业的大学生和研究生、科研人员,以及人工智能爱好者阅读。
DeepSeek-R1大模型是一款具备强大自然语言处理能力的人工智能模型,能够高效完成文本生成、翻译、问答、代码编写等多种任务,适合企业级应用和开发者集成。本书系统性地解析了大模型的核心原理、关键技术以及DeepSeek的多个实际应用场景。 全书共分为12章,首先介绍大模型的基础知识与发展历程,从神经网络的起源到大规模预训练模型的演化,再到Transformer、BERT与GPT等模型架构的深入剖析,帮助读者理解大模型的技术基石。其次详细解析了DeepSeek-R1及其Zero版本在强化学习与模型架构上的核心技术,包括混合专家模型、动态学习率调度、分布式训练及高效推理优化策略等。再次聚焦于模型训练与开发实践,介绍API调用、上下文拼接、多轮对话管理、模型微调、知识蒸馏等关键技术,并结合DeepSeek实际案例展示其在数学推理、代码生成等领域的应用。最后着重探讨