本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,部分介绍深度学习的基础知识和预备知识,并由线性模型引出简单的神经网络 多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用。 本书同时覆盖深度学习的方法和实践,主要面向在校大学生、技术人员和研究人员。阅读本书需要读者了解基本的Python编程知识及预备知识中描
本书是一本有思维方法论启示的书;是一本站在历史的高度, 正面思考科技力量的书;是一本充满想象与预言,但又不失科学论证的书。本书提供了一个崭新的视角:21世纪既是数百年以来科技、创意的顶点,又是对人类终极命运真挚的愿景。 本书特点:奇特与警示的结论,书中六个纪元的划分奇特又富于哲理;严谨与独特的论述方法,通过分析科学发展趋势,演绎并预测未来;警世之语与探讨性对话,通过智者的眼睛去审视自然、科学以及世界;章尾与未来的对话,是一种思想的博弈:通过设想中的未来去理解当今的技术发展和进化中的人类。 本书论述严谨,案例丰富,深入阐释了 奇点 作为一种思潮,其在世界范围内所产生的广泛影响,并介绍了其在哲学、科学、技术、艺术等各个方面所展示的独特魅力。
这是一部从技术原理、行业应用、商业价值、投资创业、发展趋势5个维度讲解AI Agent的著作,具有科普书和商业书的双重属性。 本书首先详细介绍了AI Agent的技术路径及其在11大领域的应用,丰富的应用案例可以帮助读者深度理解AI Agent产品形态与服务方式;然后深入探讨了AI Agent的商业价值与商业生态,并对AI Agent的企业级应用和投资创业做了很多思考与总结,能够带给读者应用与创业方面的启发。本书将技术、应用及商业理念融会贯通,理论性与实用性兼具,是一本适合业内外人士快速了解AI Agent、提升行业认知的综合指南,得到了很多行业人士、专家及创业者的一致好评。 全书共15章,分为四个部分: 第一部分(第1~3章) 技术认知 首先,介绍AI Agent的概念、特征、定义、发展历程、分类方式,以帮助读者全面认知AI Agent;然后,介绍AI Agent核心技术,展示其技
机器人开发是一项复杂的系统工程,ROS 2为智能机器人开发提供了强有力的支持,极大地提高了机器人软件开发效率。本书首先对ROS 2的基础概念、通信机制、常用库和工具进行介绍,带领读者入门ROS 2机器人开发;接着引导读者完成移动机器人的建模和仿真、建图和导航、自定义控制器和规划器等一系列实践;然后在真机实战环节,通过制作一个基于ROS 2的真实机器人,帮助读者打通仿真与真机之间的壁垒;最后,本书深入讲解了ROS 2进阶使用的相关知识,为读者进一步在实战中使用ROS 2进行机器人开发打下夯实基础。考虑读者基础,书中示例均以C 和Python两种语言实现,同时加入了关于C 新特性、Git工具、多线程和回调函数等基础知识的讲解。
内容简介这是一本全面讲解RAG技术原理、实战应用与系统构建的著作。作者结合自身丰富的实战经验,详细阐述了RAG的基础原理、核心组件、优缺点以及使用场景,同时探讨了RAG在大模型应用开发中的变革与潜力。书中不仅揭示了RAG技术背后的数学原理,还通过丰富的案例与代码实现,引导读者从理论走向实践,轻松掌握RAG系统的构建与优化。无论你是深度学习初学者,还是希望提升RAG应用技能的开发者,本书都将为你提供宝贵的参考与指导。通过阅读本书,你将掌握以下知识:?透彻理解RAG的召回和生成模块算法?高级RAG系统的技巧?RAG系统的各种训练方式方法?深入了解RAG的范式变迁?实战0基础搭建RAG系统?实战高级RAG系统微调与流程搭建
本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的基础知识。 本书总计9章,深入浅出地介绍了深度学习的理论与算法基础,从理论到实战全方位展开。前三章旨在帮助读者快速入门,介绍了必要的数学概念和工具的用法。后六章沿着深度学习的发展脉络,从最简单的多层感知机开始,讲解了深度神经网络的基本原理、常见挑战、优化算法,以及三大典型模型(基础卷积神经网络、基础循环神经网络和注意力神经网络)。 本书系统全面,深入浅出,且辅以生活中的案例进行类比,以此降低学习难度,帮助读者迅速掌握深度学习的基础知识。本书适合有志于投身人工智能领域的人员阅读,也适合作为高等院校人工智能专业的教学用书。
本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的核心知识、原理和内在逻辑。 经过基础篇的学习,想必你已经对深度学习的总体框架有了初步的了解和认识,掌握了深度神经网络从核心概念、常见问题到典型网络的基本知识。本书为核心篇,将带领读者实现从入门到进阶、从理论到实战的跨越。全书共7章,前三章包括复杂CNN、RNN和注意力机制网络,深入详解各类主流模型及其变体;第4章介绍这三类基础模型的组合体,即概率生成模型;第5章和第6章着重介绍这些复杂模型在计算机视觉和自然语言处理两大最常见领域的应用;第7章讲解生成式大语言模型的内在原理并对其发展趋势予以展望。 本书系统全面,深入浅出,且辅以生活中的案例进行类比,以此降低学习难度,能够帮助读者迅速掌握深度学习的基础知识。本书适合有
本书分为两部分。第壹部分,机器学习基础,涵盖以下主题:什么是机器学习,它试图解决什么问题,以及系统的主要类别和基本概念;第二部分,神经网络和深度学习,涵盖以下主题:什么是神经网络以及它们有什么用,使用TensorFlow和Keras构建和训练神经网络的技术,以及如何使用强化学习构建可以通过反复试错,学习好的策略的代理程序。第壹部分主要基于Scikit-Learn,而第二部分则使用TensorFlow和Keras。
《实战AI大模型》是一本旨在填补人工智能(AI)领域(特别是AI大模型)理论与实践之间鸿沟的实用手册。书中介绍了AI大模型的基础知识和关键技术,如Transformer、BERT、ALBERT、T5、GPT系列、InstructGPT、ChatGPT、GPT 4、PaLM和视觉模型等,并详细解释了这些模型的技术原理、实际应用以及高性能计算(HPC)技术的使用,如并行计算和内存优化。 同时,《实战AI大模型》还提供了实践案例,详细介绍了如何使用Colossal AI训练各种模型。无论是人工智能初学者还是经验丰富的实践者,都能从本书学到实用的知识和技能,从而在迅速发展的AI领域中找到适合自己的方向。
这是一本讲解NPU硬件架构设计与技术实现的著作。作者将自己在CPU、GPU和NPU领域15年的软硬件工作经验融会贯通,将四代NPU架构设计经验融为一体,将端侧和云侧NPU架构合二为一,总结并提炼出本书内容。本书主要讨论神经网络硬件层面,尤其是芯片设计层面的内容,主要包含神经网络的分析、神经网络加速器的设计以及具体实现技术。通过阅读本书,读者可以深入了解主流的神经网络结构,掌握如何从零开始设计一个能用、好用的产品级加速器。 通过阅读本书,你将: 透彻理解与深度学习相关的机器学习算法及其实现 学会主流图像处理领域神经网络的结构 掌握加速器运算子系统和存储子系统的设计 摸清加速器设计中遇到的具体问题及其解决方法 了解NPU架构需要考虑的控制通路和数据通路
这是一本关于Elasticsearch技术实战的教程,全面覆盖了Elastic Stack技术体系知识,旨在帮助读者深入了解Elasticsearch的核心技术和应用场景,同时掌握分布式搜索与分析引擎的设计思想和实现原理。
马文·明斯基认为,无论是人类的思维还是人工智能的思维,都是由原本简单的元素相连而组成,当这些元素组成一个整体时,就成为无限复杂的、我们称为思想和感情的东西。这些思想和感情可以转化为人类的体验。本书章节、段落之间的结构和明斯基的理论相呼应,翻过这一篇篇书页,关于思维的统一理论渐渐成型。本书妙趣横生,是想象空间里的一场历险。
这是一本能指导读者快速掌握PyTorch和深度学习的著作,从PyTorch的原理到应用,从深度学习到强化学习,本书提供了全栈解决方案。 第1版上市后销量和口碑俱佳,是深度学习领域的畅销书,被誉为PyTorch领域的标准著作。第2版在第1版的基础上,去芜存菁,与时具进,根据PyTorch新版本全面升级,技术性、实战性、针对性、丰富性、易读性均得到了进一步提升,必定能帮助读者更轻松、更高效地进入深度学习的世界。 全书一共19章,在结构上分为三大部分: 第1部分(第1~4章) PyTorch基础 首先有针对性地讲解了Python和PyTorch的基石NumPy中的关键知识,然后详细讲解了PyTorch的基础知识、神经网络工具箱和数据处理工具箱等内容,帮助读者快速了解和掌握PyTorch。 第二部分(第5~10章) 深度学习基础 依次讲解了机器学习、视觉处理、自然语言处理、注意力机制、目标检测、
《用Python编程和实践!深度学习教科书》是一本专门针对有一定编程经验,但没有Python和机器学习相关经验的读者编写的参考书籍,目标是让读者能够独立编写出机器学习相关的应用程序。书中首先介绍了机器学习和Python语言的基础知识,然后对NumPy、Pandas、matplotlib等在Python中使用频率较高的软件库进行讲解;对数据可视化、lambda和map等Python语法、基于DataFrame的数据整理、OpenCV的运用和图像数据的数据预处理进行讲解;*后对监督学习、超参数和调校等基础的机器学习及深度学习技术进行实践与挑战,并*终使读者达到能够运用深度学习技术之一的CNN来实现图像识别任务项目的技术水平。本书特点是用编程实践的方法学习,特别适合深度学习初学者及参与人工智能(AI)相关开发的程序员、研究人员和理工科学生。
这是一本从技术与管理角度全景式介绍智能汽车电子与软件的著作,涵盖行业背景、组织架构、项目管理、开发方法、系统集成、流程体系、人员搭建、核心标准、开发工具链、痛点及展望等核心内容。本书是作者在博世等头部Tier 1与OEM企业10余年技术与管理经验总结,得到了来自华为、腾讯、广汽、长城、极氪、蔚来、小鹏等20余家车企和机构的25位专家高度评价和推荐。 第1章从行业发展的里程碑、技术演变、行业格局、安全问题、量产落地、传统汽车与互联网的融合等角度阐释了汽车行业的特点,有助于读者理解软件在汽车行业落地与深化时碰到的一些现象或问题。 第2章从Tier 1与OEM的组织模式特点及软件所处位置开始,引出组织变化与融合的趋势,并以软件质量为例提出了软件体系进入汽车企业的路径,为读者提供参考思路。 第3章从汽车软件全生命周期和
本书在介绍ROS总体框架和理论要点的基础上,讲解ROS的通信机制、常用组件和进阶功能;同时以实践为主,讲解机器视觉、机器听觉、SLAM与导航、机械臂控制、机器学习等多种ROS应用的主要原理和实现方法;并分析基于ROS的机器人系统设计方法和典型实例;后论述ROS2的框架特点和使用方法,剖析ROS的发展方向。
全书分为4部分。第1部分对基础知识展开讲解,包括Linux基础和ROS入门。第2部分主要关注一个实际的机器人中的硬件和核心传感器模块的构造,重点讲解机器人上的传感器、差分底盘、树莓派主板开发方面的知识。第3部分是SLAM地图构建的核心算法,SLAM中的数学基础、基于激光的SLAM系统、基于视觉的SLAM系统、混合SLAM系统、新型SLAM系统。第4部分是自主导航相关的核心技术与应用,包括自主导航中的数学基础、基于地图的导航、基于环境探索建图的导航、强化学习在机器人导航中的应用。 通过阅读本书,读者不仅可以自己设计出一套SLAM导航机器人出来,还可以在软硬件结合的环境中提高自己的C++/Python/Java方面的编程能力,同时还可以接触到流行的SLAM算法的实际应用。
这是一本讲解如何用ChatGPT、Github Copilot X、Cursor等主流AIGC工具优化和提升软件开发全流程效率和质量的实战性著作。 全书以软件开发的流程位主线来组织内容,详细讲解了程序员、架构师、项目经理、产品经理、技术团队管理者们如何在技术方案构建、需求文档撰写、代码编写与注解、客户端开发、前端开发、后端开发、测试和调试、性能优化、疑难问题解决、产品设计、软件架构与设计、应试与面试12个主题充分发挥AIGC工具的潜能,在提高研发效率和质量的同时,提升自身的实力。 AIGC工具在软件研发12个主题的使用方法,全部以实战项目案例的方式展开讲解,有具体的工程化思路,也有可复用的提示词,还有对使用经验的总结和注意事项的提醒。只要跟着本书的案例实操一遍,就能顺利跃迁为AI时代的新程序员,与AI共同进化,成为不被AI淘汰的人。
本书结合典型机械系统控制的实例,系统地介绍了神经网络控制的基本理论、基本方法和应用技术。本书是作者多年来从事控制系统教学和科研工作的结晶,同时融入了国内外同行近年来所取得的新成果。全书共分16章,包括绪论、RBF神经网络的设计与仿真、基于梯度下降法的RBF神经网络控制、自适应RBF神经网络控制、RBF神经网络滑模控制、基于模型整体逼近的自适应RBF控制、基于局部逼近的自适应RBF控制、基于RBF神经网络的动态面自适应控制、数字RBF神经网络控制、离散神经网络控制、自适应RBF观测器设计及滑模控制、基于RBF神经网络的反演自适应控制、基于RBF神经网络的自适应容错控制、基于RBF神经网络的自适应量化控制、基于RBF神经网络的控制输出受限控制和基于RBF神经网络的控制方向未知的状态跟踪。每种控制方法都通过MATLAB进行了仿真分析。本书各部分