本书全面、深入地探讨了人工智能(AI)领域的理论和实践,以统一的风格将当今流行的人工智能思想和术语融合到引起广泛关注的应用中,真正做到理论和实践相结合。全书分7个部分,共28章,理论部分介绍了人工智能研究的主要理论和方法并追溯了两千多年前的相关思想,内容主要包括逻辑、概率和连续数学,感知、推理、学习和行动,公平、信任、社会公益和安全;实践部分完美地践行了 现代 理念,实际应用选择当下热度较高的微电子设备、机器人行星探测器、拥有几十亿用户的在线服务、AlphaZero、人形机器人、自动驾驶、人工智能辅助医疗等。本书适合作为高等院校人工智能相关专业本科生和研究生的教材,也可以作为相关领域专业人员的参考书。
《深度学习》内容介绍:《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第 1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第 2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。 《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。 《动手学深度学习》内容简介:本书旨在向读者交付有关深度学习的交互式学习体验。书中不仅阐述深度学习的算法原理,还演示它们的实现和运行。与传统图书不同,本书的每一节都是一个可以
《神经网络与深度学习:案例与实践》是《神经网络与深度学习》(蒲公英书)的配套实践书,由复旦大学邱锡鹏教授和百度飞桨团队合作完成。本书在章节设计上和《神经网络与深度学习》一一对应,并以模型解读+案例实践的形式进行介绍。模型解读主要聚焦如何从零开始一步步实现深度学习中的各种模型和算法,并结合简单的任务来加深读者对模型和算法的理解;案例实践主要强调如何使用飞桨预定义API来更好地完成实际任务,会涉及一些数据预处理问题。建议读者将本书和《神经网络与深度学习》结合阅读,在动手实践中更深入地理解深度学习的模型和原理。
人工智能(AI)技术造福了人类, 但是如果不恰当地开发和使用,反而会伤害人类和社会。针对AI技术的新特征和新挑战,本书系统提出并全面介绍 以人为中心人工智能 的理念、方法和应用。基于 以人为中心人工智能 的理念,本书系统提出 人智交互 (人 人工智能交互) 这一跨学科新领域,定义人智交互的研究对象、方法、关键问题、研究范式取向等。在详细阐述 以人为中心人工智能 新理念和人智交互新领域框架的基础上,本书从理论和方法、专题研究、行业应用三方面介绍近期的相关研究和应用,旨在推动国内相关研究和应用,进一步促进AI技术的安全有效发展,使其造福人类,并避免潜在的负面影响。 本书具有创新性、系统性、应用性、时效性等特点,属于人工智能、计算机科学、人机交互、人因工程、心理学和行为科学、设计、用户体验等跨学科领域融合的
9787115461476 深度学习 168.00 9787115600820 动手学深度学习(PyTorch版) 109.80 《深度学习》 《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第 1部分介绍基本的数学工*和机器学习的概念,它们是深度学习的预备知识;第 2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些*有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。 《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不*有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。 《动手学深度学习(PyTorch版)》 本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有
《深度学习之图像识别:核心算法与实战案例(全彩版)》全面介绍了深度学习在图像识别领域中的核心算法与应用。该书不但重视基础理论的讲解,而且从第4章开始,每章都提供了1~3个不同难度的案例供读者实践,读者可以在已有代码的基础上进行改进,从而加深对所学知识的理解。 《深度学习之图像识别:核心算法与实战案例(全彩版)》共9章:首先介绍深度学习的基础概念,包括神经网络基础知识和深度学习中的优化技术;然后系统介绍深度学习中与数据相关的知识,包括经典数据集的设计、数据集的增强,以及数据的获取、整理与可视化;接着重点针对图像识别领域,结合实战案例系统地介绍深度学习在图像分类、图像分割和目标检测3个领域的核心技术与应用;另外,还会对深度学习模型的可视化以及模型的压缩和优化进行详细介绍,为读者设计和训
本书全面阐述了现代因果关系分析。它展示了因果关系是如何从一个模糊的概念发展成为一个数学理论,并在统计学、人工智能、经济学、哲学、认知科学、卫生和社会科学等领域有重要的应用。
《深度学习详解》 本书根据李宏毅老师 机器学习 公开课中与深度学习相关的内容编写而成,介绍了卷积神经网络、Transformer、生成模型、自监督学习(包括 BERT 和 GPT)等深度学习常见算法,并讲解了对抗攻击、领域自适应、强化学习、元学习、终身学习、网络压缩等深度学习相关的进阶算法. 在理论严谨的基础上,本书保留了公开课中大量生动有趣的例子,帮助读者从生活化的角度理解深度学习的概念、建模过程和核心算法细节. 《深度学习》 《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第 1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第 2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法
本书是人工智能专业基础全面的解读,作者陆汝钤院士在知识工程和基于知识的软件工程方面做了系统的、创造性的工作,是我国该领域研究的开拓者之一。倡导并主持完成了以软件的机械化生成和移植为目标的系列软件计划(XR计划),推动了当时国产机软件缺乏问题的解决。 本书首次把异构型DAI和机器辩论引进人工智能领域。研究出基于类自然语言理解的知识自动获取方法,把ICAI生成技术推进到以自动知识获取为特征的第三代,并开发出基于知识的应用软件自动生成技术。在形式语义学方面研究了逻辑语义、代数语义和分布式语义,证明了任意Horn子句集的模型论语义和小不动点语义的等价性;给出了能描述动态控制结构的基调式代数语义;把平面的Petri网扩展成多页的Petri/Riemann网(P/R网)作为进程模型,获得了演算的真并发结构。 对于希望学习了解人工
《英语常见问题解答大词典(增订版第4版)》所涉及的问题很多是教师经常在课堂上被问到的,有些是学生在学习英语时常常进入的误区。《英语常见问题解答大词典(增订版第4版)》是迄今为止我国出版的内容、条目多、材料为翔实的英语疑难问题解答词书。全书共收常见问题解答6000则,正面例句4万余例(均选自英语原著和全真英语试题)。《英语常见问题解答大词典(增订版第4版)》覆盖了从大、中学英语课本到研究生英语教材,从高考、四、六级考到研考、托福考所涉及的语法现象和常用常考词语。因此,这是一本对中学生到大学英语教授这几个广大的读者层都很实用的参考书。《英语常见问题解答大词典(增订版第4版)》吸取外(特别是国外)英语研究的成果,对中国人学习英语感到困难的众多实际问题,作了深入浅出的解答。既有广度又有深度。其中有许多问
深度学习精粹与PyTorch实践 深度学习绝非不可窥探的黑箱!深入理解其模型和算法的实际运作机制,是驾驭并优化结果的关键。你无需成为数学专家或资深数据科学家,同样能够掌握深度学习系统内部的工作原理。本书旨在通过深入浅出的方式,为你揭示这些原理,让你在理解和解释自己的工作时更加自信与从容。 《深度学习精粹与PyTorch实践》以浅显易懂的方式揭示了深度学习算法的内部运作机制,即使是机器学习初学者也能轻松理解。本书通过平实的语言解析、详尽的代码注释,以及数十个基于PyTorch框架的实战示例,逐步引导你探索深度学习的核心概念与实用工具。本书避免了复杂的数学公式堆砌,而是采用直观易懂的方式阐述每种神经网络类型的运作逻辑。更令人兴奋的是,书中提供的所有解决方案均可在现有的GPU硬件上顺畅运行! 主要内容 ● 选择正确的深
《群体智能与多Agent系统交叉结合——理论、方法与应用》是作者在人工智能领域中群体智能和多Agent系统研究方向上近几年研究成果的系统总结。在总结目前外该研究方向发展现状的基础上,《群体智能与多Agent系统交叉结合——理论、方法与应用》着重介绍作者在交叉结合群体智能、多Agent系统、多机器人协作等方面取得的研究成果,主要包括:多Agent粒子群优化算法,多Agent粒子群优化算法在电力系统优化中的应用,多Agent粒子群优化算法在控制系统中的应用,基于群体智能的多Agent系统协作模型,基于改进蚁群算法的移动Agent路径规划与避障,基于群体智能的仿真机器人足球比赛策略及应用。《群体智能与多Agent系统交叉结合——理论、方法与应用》算法理论与应用实践并重,不但为相关群体智能和多Agent系统的研究者提供研究方法以资借鉴,而且更重要的是为群
统计学习理论是研究利用经验数据进行机器学习的一种一般理论,属于计算机科学、模式识别和应用统计学相交叉与结合的范畴,其主要创立者是本书作者。统计学习理论基本内容诞生于20世纪60~70年代,到90年代中期发展到比较成熟并受到世界机器学习界的广泛重视,其核心内容反映在Vapnik的两部重要著作中,本书即是其中一部,另一部是《统计学习理论的本质》。由于较地考虑了有限样本的情况,统计学习理论与传统统计学理论相比有更好的实用性,在该理论下发展出的支持向量机方法以其有限样本下良好的推广能力而备受重视。
语音识别已经逐渐进入人们的日常生活。语音识别技术是涉及语言、计算机、数学等领域的交叉学科。《深度学习:语音识别技术实践》介绍了包括C#、Perl、Python、Java在内的多种编程语言实践,开源语音识别工具包Kaldi的使用与代码分析,深度学习的开发环境搭建,卷积神经网络,以及语音识别中常见的语言模型N元模型和依存模型等,让读者快速了解语音识别基础,掌握开发语音识别程序的算法。
《工效学基本原理、应用及技术》的主要内容:靠前章对工效学的内容、发展史和相关立法机构进行介绍;第2章介绍人体系统,本章作为解剖学、生物学和生理学课程中精选知识复习;第3章对人体感知能力进行综述,同时说明环境因素的测量方法;第4章介绍肌肉工作机制和肌肉系统神经分布;第5章介绍人体尺寸(人体测量技术)的研究成果;第6章介绍应用工效学基本原则进行工作空间和手动工具的设计方法;第7章介绍因工作导致骨肌系统疾病的知识,包括疾病的发展历程、产生原因和症状减轻需要采取的措施;第8章介绍工作生理学知识,同时探讨重负荷工作规划的工效学原则,及如何进行生理负荷和疲劳的评估;第9章综述认知工效学和信息处理过程,同时说明控制器和显示器设计的原则;靠前0章介绍产品的易用性以及工效学设计对顾客的影响。
本书结合具体的控制对象论述过程控系统的设计、整定及其应用问题,包括常见控制回路的分析、线性与非线性调节器的选择、复杂控制系统的组成、控制算法与控制系统的实现和评估,以及各类典型单元及过程的控制方案,乃到一些的控制系统,如解耦系统、适应性控制和基于模型的控制等。本书巧妙地把控制理论融合于应用之中,使过程控制系统的设计更加科学和切合实际。本书可用作大学本科自动化专业师生的教学参考书,对从事过程控制应用研究的研究生和工程技术人员也很有参考价值。
人工智能是研究解释和模拟人类智能、智能行为及其规律的一门学科,建立智能信息处理理论,研制智能机器和智能系统,延伸和扩展人类智能。《BR》本书共16章。~6章讨论人工智能的认知问题和自动推理,论述逻辑基础、约束推理、定性推理、基于案例的推理、概率推理;第7~14章重点讨论机器学习和知识发现,包括归纳学习、支持向量机、解释学习、强化学习、无监督学习、关联规则、进化计算、知识发现;5章阐述主体计算;6章讨论互联网智能。与本书第二版相比,增加了两章新内容。其他章节也作了较大的修改和补充。
本书系统地介绍了机械手为主的优选控制器的设计和分析方法,是作者多年从事机器人控制系统教学和科研工作的结晶,同时融入了靠前外同行近年来所取得的近期新成果。本书是在原有《机器人控制系统的设计与MATLAB仿真》基础上撰写而成的。全书分为上下两册,作为下册,本册以电机、机械手、倒立摆、移动机器人和四旋翼飞行器为对象,共分13章,包括控制系统输出受限控制、控制输入受限控制、基于轨迹规划的机械手控制、机械手模糊自适应反演控制、机械手迭代学习控制、柔性机械手反演及动态面控制、柔性机械臂分布式参数边界控制、移动机器人的轨迹跟踪控制、移动机器人双环轨迹跟踪控制、四旋翼飞行器轨迹控制、基于LMI的控制系统设计、基于线性矩阵不等式的倒立摆T-S模糊控制和执行器容错控制。每种控制方法都给出了算法推导、实例分析和相
语音识别已经逐渐进入人们的日常生活。语音识别技术是涉及语言、计算机、数学等领域的交叉学科。《深度学习:语音识别技术实践》介绍了包括C#、Perl、Python、Java在内的多种编程语言实践,开源语音识别工具包Kaldi的使用与代码分析,深度学习的开发环境搭建,卷积神经网络,以及语音识别中常见的语言模型N元模型和依存模型等,让读者快速了解语音识别基础,掌握开发语音识别程序的算法。《深度学习:语音识别技术实践》从语音识别的基础开始讲起,并辅以翔实的案例,既适合需要具体实现语音识别的程序员使用,也适合有机器学习或语音识别基础的学生、研究者或从业者阅读。