本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,部分介绍深度学习的基础知识和预备知识,并由线性模型引出简单的神经网络 多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用。 本书同时覆盖深度学习的方法和实践,主要面向在校大学生、技术人员和研究人员。阅读本书需要读者了解基本的Python编程知识及预备知识中描
本书全面、深入地探讨了人工智能(AI)领域的理论和实践,以统一的风格将当今流行的人工智能思想和术语融合到引起广泛关注的应用中,真正做到理论和实践相结合。全书分7个部分,共28章,理论部分介绍了人工智能研究的主要理论和方法并追溯了两千多年前的相关思想,内容主要包括逻辑、概率和连续数学,感知、推理、学习和行动,公平、信任、社会公益和安全;实践部分完美地践行了 现代 理念,实际应用选择当下热度较高的微电子设备、机器人行星探测器、拥有几十亿用户的在线服务、AlphaZero、人形机器人、自动驾驶、人工智能辅助医疗等。本书适合作为高等院校人工智能相关专业本科生和研究生的教材,也可以作为相关领域专业人员的参考书。
《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。 《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。
AI写作可以写得又快又好,给内容创作者带来了全新的写作体验,也颠覆了传统的写作方式。本书从7个维度,系统介绍了AI写作的各种技巧,AI写作四步法,RRBE提示词模型,以及AI在各个领域的应用,实操性强,看完就能运用。 本书会带你进入AI写作的世界,从基础知识到高级技巧,掌握AI写作的关键技术,成为AI写作高手。
《深度学习》内容介绍:《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第 1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第 2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。 《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。 《动手学深度学习》内容简介:本书旨在向读者交付有关深度学习的交互式学习体验。书中不仅阐述深度学习的算法原理,还演示它们的实现和运行。与传统图书不同,本书的每一节都是一个可以
人工智能(AI),尤其是生成式语言模型和生成式人工智能(AIGC)模型,正以惊人的速度改变着我们的世界。驾驭这股潮流的关键,莫过于探究自然语言处理(NLP)技术的深奥秘境。本书将带领读者踏上一段扣人心弦的探索之旅,让其亲身感受,并动手搭建语言模型。本书主要内容包括N-Gram,词袋模型(BoW),Word2Vec(W2V),神经概率语言模型(NPLM),循环神经网络(RNN),Seq2Seq(S2S),注意力机制,Transformer,从初代GPT到ChatGPT再到GPT-4等一系列突破性技术的诞生与演进。 本书将以生动活泼的笔触,将枯燥的技术细节化作轻松幽默的故事和缤纷多彩的图画,引领读者穿梭于不同技术的时空,见证自然语言处理技术的传承、演进与蜕变。在这场不断攀登技术新峰的奇妙之旅中,读者不仅能深入理解自然语言处理技术的核心原理,还能自己动手,从零开始搭
本书适合任何想要深入了解深度学习这个迷人领域的人,您不需要具备高级数学和编程知识就可以掌握其根本原理。如果您想知道这些工具是如何工作的,并学会自己使用它们,答案尽在书中。而且,如果您已经准备好编写自己的程序,那么随附的Github存储库中还有大量补充的Python笔记本可以帮助您。 本书讲解语言通俗易懂,包含大量的的彩色插图和具有启发性的类比,以及丰富的现实世界的例子,深入地地解释了深度学习的关键概念,包括: 文本生成器如何创建新颖的故事和文章。 深度学习系统如何在人类游戏中学习游戏并获胜。 图像分类系统如何识别照片中的物体或人。 如何以对日常生活有用的方式思考概率。 如何使用构成现代人工智能核心的机器学习技术。 各种各样的智力冒险家都可以使用本书中涵盖的强大思想来构建智能系统,帮助我们更好地理
9787115630940 做好课题申报:AI辅助申请书写作 69.80 9787115632784 高效写论文:AI辅助学术论文写作 69.80 《做好课题申报:AI辅助申请书写作》 申报课题是高校教师和科研工作者十分重要的工作内容。 本书采用倒金字塔思路,对课题申请书进行了拆解,并系统介绍了如何利用 AI 辅助做好课题申报工作。本书第一章对课题申报进行了概述,分别介绍了各级别课题的申报公告和申请书及活页。第二章~第十二章分别介绍如何利用 AI 辅助开展课题申报的具体工作,主要有寻找选题、分析课题立项选题,以及课题论证相关部分的写作,包括研究背景写作、学术史梳理及研究动态写作、研究价值写作、阐释研究对象与框架思路写作、课题的重点难点写作、主要目标写作、研究计划及其可行性写作、其他部分写作。本书讲解全面、细致,并采用案例直观展示,方便读者学习。 《高
本书为大模型应用开发极简入门手册,为初学者提供了一份清晰、全面的 可用知识 ,带领大家快速了解GPT-4和ChatGPT的工作原理及优势,并在此基础上使用流行的Python编程语言构建大模型应用。通过本书,你不仅可以学会如何构建文本生成、问答和内容摘要等初阶大模型应用,还能了解到提示工程、模型微调、插件、LangChain等高阶实践技术。书中提供了简单易学的示例,帮你理解并应用在自己的项目中。此外,书后还提供了一份术语表,方便你随时参考。 准备好了吗?只需了解Python,你即可将本书作为进入大模型时代的启动手册,开发出自己的大模型应用。
PyTorch是一个开源的机器学习框架,它提供了动态计算图的支持,让用户能够自定义和训练自己的神经网络,目前是机器学习领域中非常流行的框架之一。本书基于PyTorch 2.0,详细介绍深度学习的基本理论、算法和应用案例,配套示例源代码、PPT课件。 《PyTorch 2.0深度学习从零开始学》共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实战、深度学习理论基础、MNIST分类实战、数据处理与模型可视化、基于PyTorch卷积层的分类实战、PyTorch数据处理与模型可视化、实战ResNet卷积网络模型、有趣的Word Embedding、基于循环神经网络的中文情感分类实战、自然语言处理的编码器、站在巨人肩膀上的预训练模型BERT、自然语言处理的解码器、基于PyTorch的强化学习实战、基于MFCC的语音唤醒实战、基于PyTorch的人脸识别实战。 《PyTorch 2.0深度学习从零开始学》适合深
《文心一言:你的百倍增效工作神器》是一本旨在指导读者通过合理使用文心一言提高工作效率和创作效率的指南手册。本书介绍了文心一言的操作技巧和提示词,列举了文本、文案、方案、个人 IP 内容、个人学习成长和个人生活助手等多个领域的辅助生成应用案例。授人以渔,给人工具; 拿来即用,拿来即参,本书为读者提供使用文心一言的工具、方法、案例和技巧,帮助读者十倍甚至百倍提升工作时的创造力和生产力。
《互联网大厂推荐算法实战》介绍了互联网大厂当前采用的一些前沿推荐算法,并梳理了这些算法背后的思想脉络与技术框架。 《互联网大厂推荐算法实战》总计10章,内容涵盖了推荐系统的基础知识、推荐系统中的特征工程、推荐系统中的Embedding、推荐系统的各组成模块(包括召回、粗排、精排与重排)所使用的算法技术、推荐算法实践中经常会遇到的难题以及应对之道(其中涉及多任务推荐、多场景推荐、新用户冷启动、新物料冷启动、评估模型效果、定位并解决问题等),最后还用一章的篇幅介绍了推荐算法工程师在工作、学习、面试时应该采取的做法。 《互联网大厂推荐算法实战》既适合推荐系统、计算广告、个性化搜索领域的从业人员阅读,也适合希望从事互联网算法工作的在校学生阅读。
本书旨在向读者交付有关深度学习的交互式学习体验。书中不仅阐述深度学习的算法原理,还演示它们的实现和运行。与传统图书不同,本书的每一节都是一个可以下载并运行的 Jupyter记事本,它将文字、公式、图像、代码和运行结果结合在了一起。此外,读者还可以访问并参与书中内容的讨论。 全书的内容分为3个部分:*部分介绍深度学习的背景,提供预备知识,并包括深度学习*基础的概念和技术;第二部分描述深度学习计算的重要组成部分,还解释近年来令深度学习在多个领域大获成功的卷积神经网络和循环神经网络;第三部分评价优化算法,检验影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用。 本书同时覆盖深度学习的方法和实践,主要面向在校大学生、技术人员和研究人员。阅读本书需要读者了解基本
今天,人工智能在我们的生活中随处可见。它能推送我们喜欢的电视节目,帮助我们诊断疑难杂症,还能向我们推荐商品。因此,让我们掌握人工智能的核心算法,拥抱日新月异的智能世界吧。 与那些充斥着公式和术语的教材不同,本书利用丰富的图表、案例和习题,深入浅出地讲解人工智能的基本概念。你只需要具备高中数学基础知识,即可轻松阅读本书。读完本书之后,你将能亲手设计算法来预测银行交易风险,创造艺术作品甚至配置自动驾驶汽车。 主要内容 ●各种人工智能算法的实践场景 ●帮助决策的智能搜索算法 ●受生物学启发的算法簇 ●机器学习与神经网络 ●强化学习 与Q-learning
7大专题内容深度讲解、80多个热门高频的ChatGPT Office WPS智能办公案例实战!260多分钟教学视频、140多款素材效果文件、110多页PPT教学课件和7课电子教案超值赠送!全书通过理论 实例的形式,分别介绍了ChatGPT新手入门、ChatGPT Word文档创作、ChatGPT Excel表格处理、ChatGPT VBA代码编写、ChatGPT PPT文稿生成、ChatGPT WPS高效办公,以及WPS AI智能办公等内容。本书内容结构清晰,案例丰富,适合Office初、中级用户,以及将ChatGPT与Office、ChatGPT和WPS结合起来高效办公的工作人员,如财务会计人员、人事行政人员、办公文秘等人群,也可作为计算机相关专业的教材。
OpenCV是一个跨平台计算机视觉和机器学习软件库,也是计算机视觉领域的开发人员必须掌握的技术。本书基于Python 3.8全面、系统地介绍OpenCV 4.5的使用,并配套示例源代码、开发环境与答疑服务。 本书共分15章,主要内容包括计算机视觉概述、OpenCV的Python开发环境搭建、OpenCV基本作、数组矩阵、图像处理模块、灰度变换和直方图修正、图像平滑、几何变换、图像边缘检测、图像分割、图像金字塔、图像形态学、视频处理,以及停车场车牌识别、物体识别、运动跟踪、人脸检测等案例。 本书既适合计算机视觉与图像处理、人工智能算法的开发人员阅读,也适合高等院校和培训机构计算机视觉与图像处理、人工智能等相关专业的师生教学参考。
本书系统地介绍了强化学习的原理和实现,是一本理论扎实、落地性强的图书。 本书包含3个部分:部分为强化学习基础,讲解强化学习的基础概念和表格型强化学习方法;第二部分为强化学习进阶,讨论深度强化学习的思维方式、深度价值函数和深度策略学习方法;第三部分为强化学习前沿,介绍学术界在深度强化学习领域的主要关注方向和前沿算法。同时,本书提供配套的线上代码实践平台,展示源码的编写和运行过程,让读者进一步掌握强化学习算法的运行机制。 本书理论与实践并重,在介绍强化学习理论的同时,辅之以线上代码实践平台,帮助读者通过实践加深对理论的理解。本书适合对强化学习感兴趣的高校学生、教师,以及相关行业的开发和研究人员阅读、实践。
我们在运用AI的时候,有时得不到自己想要的回答,于是责怪AI不够智能。我们容易忽略的是,AI的回答质量往往取决于提问的质量。 《秒懂AI提问:让人工智能成为你的效率神器》系统地介绍了20种向AI提问的有效方法,用这些方法可以让AI给出高质量的回答。在介绍提问方法时,本书紧扣日常工作和生活,并通过对比让读者直观感受不同提问方法的效果,最后引出更多场景下的应用,让读者真正学以致用。 《秒懂AI提问:让人工智能成为你的效率神器》适合各行业对AI技术应用感兴趣的人群阅读。
ChatGPT颠覆了互联网格局。本书紧跟技术前沿,是一本针对ChatGPT的超级实战指南。本书介绍了ChatGPT的发展历史与常用功能,剖析讲授了其初阶、进阶、高阶操作,枚举解析了27个有趣的应用例子、75个高级提示例子,以及100多条商业变现思路。本书摒弃繁杂理论,尤重实用性;又以内容充实、案例丰富为特色;同时采用场景式教学,语言轻松、深入浅出,让初学者也能轻易上手。本书教导的ChatGPT技巧有益于绝大部分读者的工作、生活所需,更可启发实现商业变现。 本书几乎适用于所有人员阅读,尤其适用于文本、图片、音视频等内容创作者,可以作为创业者、中小企业负责人、产品经理、咨询师、设计师及各类跨界人士的参考手册。
《人工智能简史》全面讲述人工智能的发展史,几乎覆盖人工智能学科的所有领域,包括人工智能的起源、自动定理证明、专家系统、神经网络、自然语言处理、遗传算法、深度学习、强化学习、超级智能、哲学问题和未来趋势等,以宏阔的视野和生动的语言,对人工智能进行了全面回顾和深度点评。 第2版中每章都有新增内容,并增加了全新的第13章,整理了人工智能几大派别的演化路线和人物的继承关系,有助读者阅读方便。 本书极具专业性、思想性和趣味性,既适合缺少专业背景的读者了解人工智能的来龙去脉,作为人工智能的启迪之书,也适合专业人士了解人工智能鲜为人知的历史,提供深入学习的指导。
本书通过Python示例介绍人工智能技术在金融数据分析中的应用。你将了解如何运用神经网络、强化学习等深度学习技术预测金融市场。本书分为六大部分。部分介绍人工智能算法的核心概念,包括监督学习和神经网络,并描绘超级人工智能愿景。第二部分讨论机器学习技术在金融市场中的应用。第三部分更进一步,讨论如何利用神经网络和强化学习技术解决金融市场中的统计失效问题。第四部分详述如何利用算法交易解决统计失效问题。第五部分展望未来,探讨人工智能会如何改变金融业。第六部分给出以Python实现的神经网络,可用于时间序列预测。