机器学习是计算机科学的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面. 全书共 16 章,大致分为 3 个部分:第 1 部分(第 1~3 章)介绍机器学习的基础知识;第 2 部分(第 4~10 章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第 3 部分(第 11~16 章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等. 每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索. 本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考.
本书主要利用AI发现和构建有效的量化策略,旨在使读者掌握AI在量化策略中的应用。随着2023年大模型的崛起,投资者需要学会与AI共生,建立个人知识库和灵活应用提示词工程(Prompt Engineering),让AI协助寻找论文、理解论文、编写代码、构建模型、训练模型、生成信号、特征识别、投资组合优化和参数优化等。AI在高质量人群的量化行业中将得到广泛应用和发展,让更多读者能掌握编程和量化技能,从而在AI的帮助下快速开发出适应市场的量化策略。 本书共10章,涵盖量化投资中AI的历史演进、投研平台的构建、量化策略的开发流程、策略分类和介绍、市场主流策略开发、策略回测和实盘准备等内容。书中提供丰富的示例代码,具有较强的实践性和系统性,并配有高等数学、金融工程和计算机科学技术等前置知识,以帮助读者深入理解量化投资策略。 本书适合量
《DeepSeek大模型高性能核心技术与多模态融合开发》深入剖析国产之光DeepSeek多模态大模型的核心技术,从高性能注意力机制切入,深入揭示DeepSeek的技术精髓与独特优势,详细阐述其在人工智能领域成功的技术秘诀。《DeepSeek大模型高性能核心技术与多模态融合开发》循序渐进地讲解深度学习注意力机制的演进,从经典的多头注意力(MHA)逐步深入DeepSeek的核心技术 多头潜在注意力(MLA)与混合专家模型(MoE)。此外,《DeepSeek大模型高性能核心技术与多模态融合开发》还将详细探讨DeepSeek中的多模态融合策略、技术及应用实例,为读者提供全面的理论指导与应用实践。《DeepSeek大模型高性能核心技术与多模态融合开发》配套所有示例源码、PPT课件、配图PDF文件与读者微信技术交流群。 《DeepSeek大模型高性能核心技术与多模态融合开发》共分15章,内容涵盖高性能注
可信机器学习是机器学习的重要部分,是一门研究机器学习可信属性的学科。本书将可信机器学习的属性贯穿始终,全面系统地介绍可信机器学习的概念原则和技术方法。本书内容分六部分。第一部分详细阐述可信机器学习的框架、机器学习生命周期以及安全性相关概念;第二部分针对机器学习中的数据介绍数据偏差、数据隐私等相关概念和解决方法;第三部分围绕建模过程介绍检测理论、监督学习和因果建模的理论及方法;第四部分针对机器学习的可靠性,讲解分布偏移的概念和缓解方法,以及机器学习公平性和安全性方法;第五部分围绕人与机器的交互,阐述机器学习的可解释性、透明性和价值对齐;第六部分针对机器学习的目标,介绍伦理原则、社会公益以及过滤气泡等问题。
《AI虚拟数字人:商业模式 形象创建 视频直播 案例应用》一书以实战案例为主,通过以下4篇内容,帮助读者完成AI虚拟数字人从入门到精通的学习。 商业模式篇:介绍了AI虚拟数字人的前景、价值、原理、应用、产业链、商业模式等内容。 形象创建篇:介绍了生成虚拟数字人的工具和平台,以及使用主流软件剪映和腾讯智影生成与 设置数字人的过程。 视频直播篇:介绍了数字人的视频直播素材和效果的制作与剪辑,丰富画面的各类效果。 案例应用篇:通过《人生哲理播报》《抖音电商带货》《戏曲知识口播》《延时摄影攻略》4 个大型案例,介绍了数字人在心理学、电商、教育和摄影等领域的实战应用。 本书适合对象:一是对AI虚拟数字人感兴趣的读者和初学者;二是想要制定虚拟形象的博主, 如直播主播、短视频博主、电商商家等;三是需要制定虚拟偶像、
本书阐述经典神经网络及典型的深度学习(神经网络)方法的基本架构、算法原理及相关问题。在此 基础上,介绍 MATLAB中神经网络工具箱在神经网络、深度学习中的应用,并给出相应的应用 实例。 本书可作为高等院校相关专业的本科生、研究生及从事神经网络及深度学习方面学习及研究工作的 专业人员的参考书。
本书主要内容包括: 1. 认识 ChatGPT:介绍 ChatGPT 的基本原理与使用方法。帮助读者快速理解与上手工具。 2. 使用 ChatGPT 辅助编写高质量代码:系统讲解如何利用 ChatGPT 描述需求、补全代码、检查语法、调试程序等。大量案例帮助读者掌握技巧,提高编程效率与代码质量。 3. ChatGPT 与数据采集与清洗:详细介绍 ChatGPT 如何辅助网页爬取、解析数据、清洗数据等。案例覆盖股票数据、人口数据等,有利于读者的实践应用。 4. 办公自动化中的数据存储与分析:介绍 MySQL 数据库、JSON 格式等的数据存储方法。使用 Pandas 展示数据分析与统计方法,互动案例展示 ChatGPT 的辅助作用。 5. 办公自动化中的数据可视化:使用 Matplotlib 绘制折线图、柱状图、饼图、散点图等。案例说明如何利用 ChatGPT 选择合适的可视化方法与改进图表。 6. ChatGPT 辅助自动化办公软件:包括 Excel、Wor
本书是《工程控制论》(第三版)的下册。这一册共九章。第十三章讨论摄动理论在控制系统设计中的应用,其中特别说明在飞行控制系统中的应用。第十四、十五两章介绍控制系统在随机干扰下的分析和设计。第十六、十八章讨论了适应性控制系统的设计。第十九章介绍了提高控制系统可靠性的各种方法。第十七、二十、二十一这三章分别是:逻辑控制和有限自动机(第十七章),信号与信息(第二十章),大系统(第二十一章)。这些方面已构成工程控制论这门学科的重要研究方向。书末还附有“有关中文著作目录选辑”,可供读者查阅。
本书将从强化学习最基本的概念开始介绍,将介绍基础的分析工具包括贝尔曼公式和贝尔曼最优公式,之后会推广到基于模型的和无模型的强化学习算法,最后会推广到基于函数逼近的强化学习方法。本书强调从数学的角度接引入概念、分析问题、分析算法。并不强调算法的编程实现,因为目前已经有很多这方面的书籍,本书将不再重复造轮子。 本书面向对强化学习感兴趣的本科生、研究生、研究人员和企业研究所从业者。 它不需要读者有任何关于强化学习的背景,因为它会从最基本的概念开始介绍。如果读者已经有一些 强化学习的背景,这本书也可以帮助他们更深入地理解一些问题或者带来新的视角。 本书要求读者具备一定的概率论和线性代数知识。本书的附录中包含了一些必需的数学基础知识。
本书的作者约翰 冯 诺伊曼(John von Neumann,1903 1957)是20世纪重要的数学家之一,被后人称为 计算机之父 和 博弈论之父 。 本书是诺依曼在1955 1956年为西里曼讲座而准备的未完成讲稿,是作者对过去十几年在计算机领域所做研究的一个总结性梳理。诺依曼在书中首先概述了模拟计算机和数字计算机的一些基本设计思想和理论基础,然后从数学的角度,主要是逻辑和统计数学的角度,探讨了人脑的神经系统的控制和逻辑结构,对计算机的数学运算和人脑思维的过程进行了比较研究。 本书是计算机和人工智能领域的一篇重要的原始文献,具有高度的前瞻性,为计算机的创新与发展以及机器人的研究指明了方向。
人工智能 (AI) 时代已悄然而至,然而对 AI 伦理学的研究却刚刚起步。与以往的技术革命不同,AI 有望在多个领域取代人类,但也有伤害人类的潜在风险。为防止对AI技术的滥用,我们在复杂性变得不可控之前,必须把糟糕的情况都预想到、分析到。 《人工智能伦理》从人工智能的关键内容(包括图灵测试、数据、知识、机器学习、自我意识等)出发,尽可能地用朴素的语言讲清楚复杂的概念,揭示出各种AI伦理问题以唤起读者的思考。本书基于大量真实数据,阐述了和平、合理发展 AI 技术的伦理思想,对 AI 技术可能引发的某些社会问题(如技术失业、两性平等)也做了剖析。
内容简介本书是AI时代法律人和法律机构的生存指南,它从业务角度全面总结了法律人如何使用AI提升工作效率,以及律所等机构如何使用AI提升运营效率;它从技术角度详细讲解了如何构建法律行业的垂直大模型、知识库和智能体。它由中国领先的法律科技企业新橙科技(iCourt)官方出品,是iCourt的CEO带领团队核心成员总结的iCourt在AI领域的理论研究成果和实战经验。全书内容分为五个部分:第一部分(第1章) AI带来的影响与应对措施从法律人的视角介绍了AI大模型的基础知识,以及AI在法律领域的应用趋势和场景。从宏观角度深入探讨AI对法律行业带来的积极影响和消极影响。最后部分为法律行业从业者和法律机构应对 AI 带来的变革提供相应策略。第二部分(第2~6章)AI 助力法律人提升工作效率围绕类案检索、案情分析、法律咨询、法律文书写作、合同审查等法
本书系统地介绍了机械手控制的几种先进设计方法,是作者多年来从事机器人控制系统教学和科研 工作的结晶,同时融入了国内外同行近年来所取得的**成果。 本书主要以机械手的控制为论述对象,共包括16章内容,分别介绍PID 控制、神经网络自适应控制、 模糊自适应控制、迭代学习控制、反演控制、滑模控制、自适应鲁棒控制、末端轨迹及力的连续切换滑模控 制、重复控制的基本原理及设计、机械手容错控制、基于事件驱动的机械手反演控制、基于输入延迟的机械 手控制、基于执行器量化的控制、基于控制方向未知的控制和多智能体系统一致性控制的设计与分析。每 种方法都给出了算法推导、实例分析和相应的MATLAB仿真设计程序。 本书各部分内容既相互联系又相互独立,读者可根据自己的需要选择学习。本书适合从事生产过程 自动化、计算机应用、机械电子和电气
机器学习是计算机科学的重要分支领域.本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面.全书共16章,大致分为3个部分:第1部分(第1~3章)介绍机器学习的基础知识;第2部分(第4~10章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3部分(第11~16章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等.每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索.本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考.
本书主要介绍经典的机器学习算法的原理及改进,以及MATLAB的实例实现。本书内容分为三部分。*部分(第1章)是机器学习概念篇,介绍机器学习的相关概念,并且对机器学习的各类算法进行分类,以便读者对机器学习的知识框架有一个整体的了解,从而在后续的学习中更容易接受机器学习涉及的各类算法。第二部分(第2章、第3章)是MATLAB机器学习基础篇,介绍MATLAB的基本使用方法,以及MATLAB集成的机器学习工具箱。MATLAB易上手的特点让使用者将更多的精力专注于算法开发与使用,而不是搭建算法实现开发平台。第三部分(第4章~第19章)是机器学习算法与MATLAB实践篇,对监督学习、无/非监督学习、强化学习三大类常用算法进行逐个讲解,包括机器学习算法原理、算法优缺点、算法的实例解释以及MATLAB的实践应用。本书适合以下读者: 对人工智能、机器学习感兴趣的读者;
本书弥补了纯数学书籍和机器学习书籍存在的单一性问题,介绍了理解机器学习所需的数学概念,例如线性代数、解析几何、矩阵分解、向量微积分、优化、概率和统计,并使用这些概念推导出了四种核心机器学习方法:线性回归、主成分分析、高斯混合模型和支持向量机。本书每一章都包括一些例子,大部分章还配有习题,以方便读者测试对所学知识的理解程度。本书适合数据科学专业和计算机科学专业的学生,以及算法工程师与机器学习领域相关从业者阅读。
本书系统阐述了DeepSeek大模型架构、部署及应用实战的相关内容。从人工智能和大模型的基础理论出发,深入剖析了DeepSeek的底层技术,如Transformer架构、混合专家、动态任务分配、稀疏激活及归一化等关键技术,并详细介绍了模型训练、优化和推理的前沿方法。书中不仅展示了DeepSeek在多模态模型和推理系统中的技术优势,还提供了丰富的实战案例,涵盖了从本地部署到云端应用,再到与办公软件、开发工具和Web交互系统的无缝集成。通过理论解析与实践演示,读者将获得从模型设计到实际应用全流程的详细指导。本书非常适合人工智能领域的技术开发者、系统架构师,以及初探大模型应用的爱好者学习,也可用作高等院校相关专业的教材及参考书。
书中按照游戏项目开发的流程编排内容,用一个综合实例贯穿全书,详细介绍了蓝图的应用、游戏基础逻辑的编写、UI的制作、AI的开发、动画的制作、C 开发等知识。
本书是资深金融数据分析专家多年工作的结晶。书中深入浅出地阐释机器学习的数学基础及其在金融数据分析领域的应用。 全书共分9章。第1章介绍机器学习的发展状况并概述机器学习在金融中的应用。第2章介绍监督学习的通用框架。第3章描述*简单的线性回归模型 普通*小二乘法以及正则化方法 岭回归和套索回归,并讨论线性模型及非线性的回归和分类方法。第4章讨论监督学习中的树模型,包括决策树、随机森林和梯度提升树。第5章重点介绍三种主要的神经网络:人工神经网络、卷积神经网络和循环神经网络。第6章和第7章介绍无监督学习,主要包括聚类分析和主成分分析。第8章重点介绍强化学习在投资组合优化中的应用。第9章以一个流行的数据挑战项目为例,使用前几章介绍的机器学习方法预测金融违约风险,为读者提供解决实际数据问题的经验。 本书内