《统计学习要素:机器学习中的数据挖掘、推断与预测(第2版)》在一个通用的概念框架中描述通用于数据挖掘、机器学习和生物信息学等领域的重要思想和概念。这些统计学范畴下的概念是人工智能与机器学习的基础。全书共18 章,主题包括监督学习、回归的线性方法、分类的线性方法、基展开和正则化、核光滑方法、模型评估和选择、模型推断和平均、加性模型、树和相关方法、Boosting 和加性树、神经网络、支持向量机和柔性判断、原型方法和*近邻、非监督学习、随机森林、集成学习、无向图模型和高维问题等。 《统计学习要素:机器学习中的数据挖掘、推断与预测(第2版)》主题全面,是一本经典的统计学习教材,适合本科高年级学生和研究生使用和参考。
本书以通俗易懂的风格介绍了机器学习和深度学习技术,只涉及了基本的数学知识。本书由两位机器学习和深度学习领域的专家编写,书中的案例涵盖了银行、保险、电子商务、零售和医疗等多个行业。本书讲述如何在当今的智能设备和应用程序中使用机器学习和深度学习技术。本书提供了对书中涉及的数据集、代码和示例项目的下载。 l 机器学习和深度学习的概念 l 随机森林和提升方法 l Python编程与统计学基础 l 人工神经网络 l 回归与逻辑回归 l TensorFlow与Keras l 决策树 l 深度学习超参数 l 模型选择与交叉验证 l 卷积神经网络(CNN) l 聚类分析 l 循环神经网络(RNN)和长短期记忆网络(LSTM)
工程师需要知道的机器学习和人工智能提供的实例和图示来自Prosise的AI和ML课程,这]课程受到了全球各地许多公司和研究所的青睐和欢迎。作者不涉及让人滑悚然和望而生畏的数学公式,目的只有一个那就 是面向工程师和软件开发人员,帮助他们迅速入门并通过案例迅速运用人工智能和机器学习来解决业务问题。本书讲帮助读者学会什么是机器学习和深度学习以及两者各有哪些用途;理解常用的深度学习算法的原理及其应用;学会标记和未标记数据,监督学习和非监督学习有何差异;通过scikit-learn和神经网络Keras和TensorFlow ,运用Python来进行机器学习建模;训练和评分地柜模型与-进制和多类粉类器模型 ;构建面检测和面识别模型以及 对象检测模型。本书适合硬件工程师与软件开发人员阅读和参考
马文·明斯基认为,无论是人类的思维还是人工智能的思维,都是由原本简单的元素相连而组成,当这些元素组成一个整体时,就成为无限复杂的、我们称为思想和感情的东西。这些思想和感情可以转化为人类的体验。本书章节、段落之间的结构和明斯基的理论相呼应,翻过这一篇篇书页,关于思维的统一理论渐渐成型。本书妙趣横生,是想象空间里的一场历险。
《机器学习实战使用R、tidyverse和mlr》将使用RStudio和非常棒的mlr程序包开启你的机器学习之旅。这本实用指南简化了理论,避免了不必要的复杂统计和数学知识,所有核心的机器学习技术都通过图形和易于掌握的示例进行清晰的解释。每一章的内容都十分引人入胜,你将掌握如何把新的算法付诸实践,以解决各种预测分析问题,包括泰坦尼克沉船事件中不同乘客的幸存概率、垃圾邮件过滤、毒酒事件调查等。 主要内容 使用tidyverse程序包处理和绘制数据 监督机器学习和非监督机器学习技术 分类、回归、降维和聚类算法 统计学基础
本书以实际操作为导向,用ChatGPT Midjourney Stable Diffusion来充分释放读者的想象力,展现视觉创意的无限可能性。本书详细讲解了基于ChatGPT、Midjourney、Stable Diffusion进行AI绘画的完整学习路线,包括提示词的提问、绘画技巧、图片生成、提示词编写、参数描述、模型训练等,同时搭配了丰富的实际操作案例。整本书内容全面、详尽且深入浅出,实用性很强。
《Python机器学习项目实战》引领大家在构建实际项目的过程中,掌握关键的机器学习概念!使用机器学习,我们可完成客户行为分析、价格趋势预测、风险评估等任务。要想掌握机器学习,需要有优质的范例、清晰的讲解和大量的练习。本书完全满足这三点! 本书展示了现实、实用的机器学习场景,并全面、清晰地介绍了机器学习的关键概念。在学习本书的过程中,读者将会完成一些引人入胜的项目,比如使用线性回归预测汽车价格,部署客户流失预测服务等。读者将**算法,学习在无服务器系统上部署机器学习应用,以及使用Kubernetes和Kubeflow服务模型等重要技术。大家埋头苦学,亲自动手,享受掌握机器学习技能的乐趣! 主要内容 ●收集和清理训练模型的数据 ●使用流行的Python工具,包括NumPy、Scikit-Learn和TensorFlow ●将机器学习模型部署到生产环境中 阅读门槛 读者
本书是作者多年在数据智能领域中利用机器学习实战经验的理解、归纳和总结。出于 回归事物本质,规律性、系统性地思考问题 理论为实践服务并且反过来充实理论,为更多人服务 的想法和初心,本书系统地阐述了机器学习理论和工程方法论,并结合实际商业场景落地。 全书分为3部分。第1部分是机器学习的数学理论理解,这部分不是对于机器学习数学理论的严谨推导和证明,更多是对于理论背后的 到底是什么,为什么要这样做 的通俗理解。尽可能通过对应到日常生活中的现象来进行讲述。第2部分是机器学习模型、方法及本质,这一部分针对机器学习的方法论及具体的处理过程进行阐述。涉及数据准备、异常值的检测和处理、特征的处理、典型模型的介绍、代价函数、激活函数及模型性能评价等,是本书的核心内容。我们学习知识的主要目的是解决问题,特
《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。
《意向性与人工智能/心灵与认知文丛》围绕塞尔的 中文屋论证 中所提出的 人工智能意向性缺失难题 ,借助心灵哲学和认知科学的成果,在重新思考人类智能的种种问题的基础上,反思指导人工智能实践的计算主义和联结主义,进而探讨意向性与人工智能的关系问题以及与之相关的人工智能的发展方向问题。既从哲学意向性理论的角度对人工智能研究中存在的问题及原因作了思考,对其发展方向和战略作了探究,又利用人工智能和认知科学几十年来积累的成果反观哲学的意识和意向性研究,探寻这一研究领域的新生长点和突破口,提出:要解决人工智能的根本性问题,无疑要为之建立理论模型,而要如此,又必须深入探讨作为人类智能之关键要素的意向性的构成、结构、特征、成立条件、根据、内在运作过程、机制、发生发展过程及原理等。不仅有较高的前沿性
《机器学习观止 核心原理与实践》在写作伊始,就把读者设想为一位虽然没有任何AI基础,但对技术本身抱有浓厚兴趣、喜欢 抽丝剥茧 、探究真相的 有识之士 。有别于市面上部分AI技术书籍从一开始就直接讲解各种 高深莫测 算法的叙 述手法,《机器学习观止 核心原理与实践》尝试先从零开始构建基础技术点,而后 循序渐进 地引领读者前进,*终 直捣黄龙 ,赢取*后的胜利。 全书据此分为5篇,共31章,内容基本覆盖了由AI发展历史、数学基础知识、机器学习算法等经典知识点以及深度学习、深度强化学习等较新理论知识所组成的AI核心技术。同时注重 理论联系实践 ,通过多个章节重点 介绍了如何在工程项目中运用AI来解决问题的诸多经验以及相应的模型算法,以期让读者既能享受到 知其所以 然 的乐趣,还能体会到 知其然 的轻松和愉悦。 《机器学习观
本书的目标是帮助读者全面、系统地学习机器学习所必须的数学知识。全书由8章组成,力求精准、最小地覆盖机器学习的数学知识。包括微积分,线性代数与矩阵论,*化方法,概率论,信息论,随机过程,以及图论。本书从机器学习的角度讲授这些数学知识,对它们在该领域的应用举例说明,使读者对某些抽象的数学知识和理论的实际应用有直观、具体的认识。 本书内容紧凑,结构清晰,深入浅出,讲解详细。可用作计算机、人工智能、电子工程、自动化、数学等相关专业的教材与教学参考书。对人工智能领域的工程技术人员与产品研发人员,本书也有很强的参考价值。对于广大数学与应用的数学爱好者,本书亦为适合自学的读本。
近十余年,少自由度并联机器人机构成为了国际机构学界研究的热点,受到了各行各业的广泛关注。由于少自由度并联机器人与六自由度并联机器人相比,具有机械结构简单,制造成本低和容易控制等优点,在工业、生活中具有广泛的应用前景。少自由度并联机器人的动力学研究是其高精度控制和应用的前提与基础。本书的主要内容包括:机构学的基础知识、少自由度刚性并联机器人机构的运动学和动力学,以及柔性并联机器人机构的动力学建模与分析等八章内容。同时,为了方便读者阅读本书和进行机器人机构学的相关研究,还特别在本书附录中编入了与机器人机构学有关的数学基础知识、微分方程求解以及物体转动惯量等内容。本书可以作为在机械工程、自动化、机器人技术、智能控制等行业从事机构学或机器人研究和应用开发的科研工作者、工程技术人员和高
《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第 1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第 2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。 《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。
本书内容共10章。第1章为绪论,包括机器视觉的相关概念,机器视觉的发展、基本任务、应用领域与困难,以及马尔视觉理论;第2章为数字图像处理;第3章为相机成像;第4章为相机标定;第5章为Shape from X;第6章为双目立体视觉;第7章为结构光三维视觉;第8章为深度相机,介绍当前颇受欢迎的Kinect、Intel RealSense等深度相机的知识与相关应用;第9章为机器学习基础;第10章为机器学习在机器视觉领域的应用,包括机器学习在模式识别、图像超分辨率重建、图像去噪、目标跟踪、三维重建等方面的应用。 本书除第1章和第9章,其他各章都配有应用案例,包括案例的分析过程、实验设置、实验数据、程序代码及运行结果。案例的编程实现采用了MATLAB、C 、Python程序设计语言,使用了OpenCV函数、MATLAB视觉与图形工具箱、Scikit-Learn机器学习工具包,以及MatConvNet、TensorFlow、K