筛选:
    • 机器学习公式详解第2版 周志华西瓜书《机器学习》伴侣书南瓜书新版上市!了解人工智能ChatGpt底层数学逻辑!
    •   ( 3054 条评论 )
    • 谢文睿秦州贾彬彬 /2023-05-01/ 人民邮电出版社
    • 周志华老师的《机器学习》(俗称 西瓜书 )是机器学习领域的经典入门教材之一。本书是《机器学习公式详解》(俗称 南瓜书 )的第2 版。相较于第1 版,本书对 西瓜书 中除了公式以外的重、难点内容加以解析,以过来人视角给出学习建议,旨在对比较难理解的公式和重点内容扩充具体的例子说明,以及对跳步过大的公式补充具体的推导细节。 全书共16 章,与 西瓜书 章节、公式对应,每个公式的推导和解释都以本科数学基础的视角进行讲解,希望能够帮助读者快速掌握各个机器学习算法背后的数学原理。 本书思路清晰,视角独特,结构合理,可作为高等院校计算机及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考

    • ¥49.9 ¥89.8 折扣:5.6折
    • 一本书读懂AI Agent:技术、应用与商业 王吉伟
    •   ( 317 条评论 )
    • 王吉伟 /2024-10-01/ 机械工业出版社
    • 这是一部从技术原理、行业应用、商业价值、投资创业、发展趋势5个维度讲解AI Agent的著作,具有科普书和商业书的双重属性。 本书首先详细介绍了AI Agent的技术路径及其在11大领域的应用,丰富的应用案例可以帮助读者深度理解AI Agent产品形态与服务方式;然后深入探讨了AI Agent的商业价值与商业生态,并对AI Agent的企业级应用和投资创业做了很多思考与总结,能够带给读者应用与创业方面的启发。本书将技术、应用及商业理念融会贯通,理论性与实用性兼具,是一本适合业内外人士快速了解AI Agent、提升行业认知的综合指南,得到了很多行业人士、专家及创业者的一致好评。 全书共15章,分为四个部分: 第一部分(第1~3章) 技术认知 首先,介绍AI Agent的概念、特征、定义、发展历程、分类方式,以帮助读者全面认知AI Agent;然后,介绍AI Agent核心技术,展示其技

    • ¥54.5 ¥99 折扣:5.5折
    • 智慧的疆界:从图灵机到人工智能
    •   ( 1902 条评论 )
    • 周志明 /2022-07-25/ 机械工业出版社
    • 内容简介 这是一部对人工智能充满敬畏之心的匠心之作,《深入理解Java虚拟机》作者耗时一年完成,它将带你从奠基人物、历史事件、学术理论、研究成果、技术应用等5个维度全面读懂人工智能。 本书以时间为主线,用专业的知识、通俗的语言、巧妙的内容组织方式,详细讲解了人工智能这个学科的全貌、能解决什么问题、面临怎样的困难、尝试过哪些努力、取得过多少成绩、未来将向何方发展,尽可能消除人工智能的神秘感,把阳春白雪的人工智能从科学的殿堂推向公众面前。 全书共8章,逻辑上分为4个部分: 部分 人工智能的起源(第1~2章) 阐述了在人工智能学科创立之前,图灵、香农等先驱们对智能的探索和思考。首先以 人工智能之父 图灵的生平事迹为主线,介绍了图灵机、图灵测试,以及图灵对智能的思考、理解和定义;然后以达特茅斯会议为主线,

    • ¥38 ¥69 折扣:5.5折
    • 人工智能的底层逻辑
    •   ( 205 条评论 )
    • 张长水 /2024-10-01/ 清华大学出版社
    • 《人工智能的底层逻辑》用科普化的语言介绍了搜索、计算机视听觉、自然语言处理、机器学习、多模态信息处理等人工智能系统中的基础算法和数学模型,它们是实现人工智能的基础。展示了人工智能的底层逻辑,人工智能工作的基本规律。让读者真正搞懂如何给机器装上眼睛和耳朵、如何让机器理解人类语言、如何让机器拥有知识、如何让机器懂逻辑会推理、如何使机器人的言行符合人类的规范。全书深入浅出,通俗易懂,精美的插画更增加了可读性,让读者轻松掌握人工智能本质的内核,搞懂人工智能运行的底层逻辑。

    • ¥44.5 ¥79 折扣:5.6折
    • 机器学习之数学基础:概率统计与算法应用
    •   ( 90 条评论 )
    • 朱宁 著 /2024-06-01/ 水利水电出版社
    • 本书先从概率论的基础讲起,然后逐步深入到概率论在机器学习中的应用,最后结合机器学习实战案例,重点介绍了概率论的概念及其在机器学习中的应用。通过本书读者不但可以系统地学习常见概率的相关知识,还能对机器学习开发有更为深入的理解。 本书共10章,涵盖的主要内容:机器学习简介;为什么机器学习需要概率论;概率的定义;集合和事件;独立性;概率的性质;常见的计算概率方法;离散型和连续型概率简介;离散型和连续型概率的期望值、方差和标准差;几种常见的离散型和连续型概率分布;条件概率;联合概率;边缘概率;贝叶斯理论;随机过程简介;马尔可夫链;隐马尔克夫模型;高斯过程;常见的机器学习Python库;机器学习分类算法和回归算法简介;概率论在分类算法和回归算法中的应用;常见的分类算法和回归算法;强化学习简介;有

    • ¥39.3 ¥69.8 折扣:5.6折
    • AI加速器架构设计与实现
    •   ( 249 条评论 )
    • 甄建勇 王路业 著 /2023-07-02/ 机械工业出版社
    • 这是一本讲解NPU硬件架构设计与技术实现的著作。作者将自己在CPU、GPU和NPU领域15年的软硬件工作经验融会贯通,将四代NPU架构设计经验融为一体,将端侧和云侧NPU架构合二为一,总结并提炼出本书内容。本书主要讨论神经网络硬件层面,尤其是芯片设计层面的内容,主要包含神经网络的分析、神经网络加速器的设计以及具体实现技术。通过阅读本书,读者可以深入了解主流的神经网络结构,掌握如何从零开始设计一个能用、好用的产品级加速器。 通过阅读本书,你将: 透彻理解与深度学习相关的机器学习算法及其实现 学会主流图像处理领域神经网络的结构 掌握加速器运算子系统和存储子系统的设计 摸清加速器设计中遇到的具体问题及其解决方法 了解NPU架构需要考虑的控制通路和数据通路

    • ¥54.5 ¥99 折扣:5.5折
    • 心智社会:从细胞到人工智能,人类思维的优雅解读
    •   ( 3379 条评论 )
    • 马文 /2021-12-23/ 机械工业出版社
    • 马文·明斯基认为,无论是人类的思维还是人工智能的思维,都是由原本简单的元素相连而组成,当这些元素组成一个整体时,就成为无限复杂的、我们称为思想和感情的东西。这些思想和感情可以转化为人类的体验。本书章节、段落之间的结构和明斯基的理论相呼应,翻过这一篇篇书页,关于思维的统一理论渐渐成型。本书妙趣横生,是想象空间里的一场历险。

    • ¥54.5 ¥99 折扣:5.5折
    • ROS机器人开发实践
    •   ( 2618 条评论 )
    • 胡春旭 /2018-05-30/ 机械工业出版社
    • 本书在介绍ROS总体框架和理论要点的基础上,讲解ROS的通信机制、常用组件和进阶功能;同时以实践为主,讲解机器视觉、机器听觉、SLAM与导航、机械臂控制、机器学习等多种ROS应用的主要原理和实现方法;并分析基于ROS的机器人系统设计方法和典型实例;后论述ROS2的框架特点和使用方法,剖析ROS的发展方向。

    • ¥54.5 ¥99 折扣:5.5折
    • 自适应学习--人工智能时代的教育革命
    •   ( 1043 条评论 )
    • 李韧 /2018-12-14/ 清华大学出版社
    • 本书以浅显生动的语言讲述*前沿的理念 人工智能与自适应学习将如何改变教育。当下人工智能正悄悄影响着社会生活与教育体系的各个层面,对全世界的学习与教育活动,都将产生极为深远的影响。因为人工智能,因为自适应学习,自孔子以来人类两千年历史上*次,我们可以有机会真正实现 因材施教 的伟大教育理念,跨越过去难以克服的重重阻碍,让教育真正实现 个性化 ,积极改善教学的成效, 复制 *卓越的教师,让优秀教师不再是 稀缺资源 。学校可以更有效地进行教育改革,政府部门也能用更低的成本实现教育公平。在这一刻,我们能够清晰地看到: 一次全新的教育革命正在展开!本书可作为高等院校教育学、教育技术、计算机专业高年级本科生、研究生的教材,也可作为广大教育科技工作者和教育管理者的参考用书。

    • ¥22.3 ¥39.5 折扣:5.6折
    • 贝叶斯推理与机器学习
    •   ( 153 条评论 )
    • [英]大卫·巴伯 /2023-11-14/ 机械工业出版社
    • 本书全面介绍贝叶斯推理与机器学习,涉及基本概念、理论推导和直观解释,涵盖各种实用的机器学习算法,包括朴素贝叶斯、高斯模型、马尔可夫模型、线性动态系统等。本书在介绍方法的同时,强调概率层面的理论支持,可帮助读者加强对机器学习本质的认识,尤其适合想要学习机器学习中的概率方法的读者。本书首先介绍概率论和图的基础概念,然后以图模型为切入点,用一种统一的框架讲解从基本推断到高阶算法的知识。本书不仅配有BRML工具箱,而且提供大量MATLAB代码实例,将概率模型与编程实践相结合,从而帮助读者更好地理解模型方法。

    • ¥109.5 ¥199 折扣:5.5折
    • 智慧的疆界 从图灵机到人工智能 机械工业出版社
    •   ( 23 条评论 )
    • 周志明 /2018-10-01/ 机械工业出版社
    • 本书深入介绍了人工智能六十余年发展里程中出现的重要历史事件、理论学说和所取得的激动人心的成果;也从科普的角度,尽可能以不依赖数学等专业知识的方式去介绍这些成果背后的理论与算法。读者可以通过本书对人工智能学科发展里程的解析体会到人工智能的创造者和推动者们所希望的智能理论和产品是如何工作的。无论是与人工智能产业相关的研发人员,还是这个领域的专业研究人员,或是信息科学和计算机科学的爱好者们,都能从本书中得到启发。

    • ¥34.5 ¥69 折扣:5折
    • scikit-learn机器学习实战
    •   ( 296 条评论 )
    • 邓立国 郭雅秋 陈子尧 邓淇文 /2022-06-01/ 清华大学出版社
    • 本书围绕scikit-learn库,详细介绍机器学习模型、算法、应用场景及其案例实现方法,通过对相关算法循序渐进的讲解,带你轻松踏上机器学习之旅。本书采用理论与实践相结合的方式,结合Python3语言的强大功能,以小的编程代价来实现机器学习算法。本书配套PPT课件、案例源码、数据集、开发环境与答疑服务。 本书共分13章,内容包括机器学习的基础理论、模型范式、策略、算法以及机器学习的应用开发,涵盖特征提取、简单线性回归、k近邻算法、多元线性回归、逻辑回归、朴素贝叶斯、非线性分类、决策树回归、随机森林、感知机、支持向量机、人工神经网络、K均值算法、主成分分析等热点研究领域。 本书可以作为机器学习初学者、研究人员或从业人员的参考书,也可以作为计算机科学、大数据、人工智能、统计学和社会科学等专业的大学生或研究生的教材

    • ¥38.9 ¥69 折扣:5.6折
    • Python数据挖掘与机器学习
    •   ( 650 条评论 )
    • 魏伟一 张国治 /2021-04-01/ 清华大学出版社
    • 本书内容丰富,循序渐进,以数据挖掘框架为主线,系统地介绍了数据挖掘技术的基本原理、方法和实践应用,全面反映了数据挖掘的理论体系和应用的*进展。课程既讨论数据挖掘的基本理论知识和框架体系结构,又介绍了数据挖掘算法的Python实现与应用,强调了理论与实践相结合,基础知识与前沿发展相结合。本书可作为计算机数据科学相关专业高年级本科生、硕士研究生的软件挖掘教材,同时也可以作为对Python数据挖掘感兴趣读者的自学参考书。

    • ¥33.7 ¥59.8 折扣:5.6折
    • 机器学习在量化金融中的应用
    •   ( 376 条评论 )
    • 倪好 于光希 郑劲松 董欣 /2021-02-01/ 清华大学出版社
    • 本书是资深金融数据分析专家多年工作的结晶。书中深入浅出地阐释机器学习的数学基础及其在金融数据分析领域的应用。 全书共分9章。第1章介绍机器学习的发展状况并概述机器学习在金融中的应用。第2章介绍监督学习的通用框架。第3章描述*简单的线性回归模型 普通*小二乘法以及正则化方法 岭回归和套索回归,并讨论线性模型及非线性的回归和分类方法。第4章讨论监督学习中的树模型,包括决策树、随机森林和梯度提升树。第5章重点介绍三种主要的神经网络:人工神经网络、卷积神经网络和循环神经网络。第6章和第7章介绍无监督学习,主要包括聚类分析和主成分分析。第8章重点介绍强化学习在投资组合优化中的应用。第9章以一个流行的数据挑战项目为例,使用前几章介绍的机器学习方法预测金融违约风险,为读者提供解决实际数据问题的经验。 本书内

    • ¥38.9 ¥69 折扣:5.6折
    • 机器学习——原理、算法与应用
    •   ( 2300 条评论 )
    • 雷明 /2019-09-01/ 清华大学出版社
    • 机器学习是当前解决很多人工智能问题的核心技术,自2012年以来,深度学习的出现带来了人工智能复兴。本书是机器学习和深度学习领域的入门与提高教材,紧密结合工程实践与应用,系统、深入地讲述机器学习与深度学习的主流方法与理论。全书由23章组成,共分为三大部分。第1~3章为*部分,介绍机器学习的基本原理、所需的数学知识(包括微积分、线性代数、*化方法和概率论),以及机器学习中的核心概念。第4~22章为第二部分,是本书的主体,介绍各种常用的有监督学习算法、无监督学习算法、半监督学习算法和强化学习算法。对于每种算法,从原理与推导、工程实现和应用3个方面进行介绍,对于大多数算法,都配有实验程序。第23章为第三部分,介绍机器学习和深度学习算法实际应用时面临的问题,并给出典型的解决方案。 本书理论推导与证明详细、

    • ¥49.5 ¥88 折扣:5.6折
    • 机器学习中的数学 人工智能深度学习技术丛书 chatgpt聊天机器人 机器学习公式详解 人工智能导论 深度学习实战 自动
    •   ( 3482 条评论 )
    • 孙博 编著 /2019-11-01/ 水利水电出版社
    • 《机器学习中的数学》是一本系统介绍机器学习中涉及的数学知识的入门图书,本书从机器学习中的数学入门开始,以展示数学的友好性为原则,讲述了机器学习中的一些常见的数学知识。机器学习作为人工智能的核心技术,对于数学基础薄弱的人来说,其台阶是陡峭的,本书力争在陡峭的台阶前搭建一个斜坡,为读者铺平机器学习的数学之路。 《机器学习中的数学》共19章,分为线性代数、高等数学和概率3个组成部分。第 1 部分包括向量、向量的点积与叉积、行列式、代数余子式、矩阵、矩阵和方程组、矩阵的秩、逆矩阵、高斯 诺尔当消元法、消元矩阵与置换矩阵、矩阵的LU分解、欧几里得距离、曼哈顿距离、切比雪夫距离、夹角余弦等;第2部分包括导数、微分、不定积分、定积分、弧长、偏导、多重积分、参数方程、极坐标系、柱坐标系、球坐标系、梯度、

    • ¥50.6 ¥89.8 折扣:5.6折
广告