《DK数学百科(全彩)》内容简介:几千年来,人类一直处于探索、发现数学真理的征途中。数学试图为伟大的思想找寻简洁的解释方法,数学致力于发现特征并总结特征。从上古时代的莱因德纸草书、芝诺运动悖论,中世纪的二项式定理、斐波那契数列,文艺复兴时期的梅森素数、帕斯卡三角形,启蒙运动时期的欧拉数、哥德巴赫猜想,19世纪的贝塞尔函数、黎曼猜想、拓扑学,到近现代的无限猴子定理、模糊逻辑、四色定理,本书介绍了数学领域的诸多伟大思想,并用通俗易懂的语言进行阐释。让我们一起翻开这本书,品味数学的优雅与美丽。
《高观点下的初等数学》是具有世界影响的数学教育经典,由菲利克斯·克莱因根据自己在哥廷根大学为中学数学教师及学生开设的讲座所撰写,书中充满了他对数学教育的洞见,生动地展示了一流大师的风采。本书出版后被译成多种文字,影响至今不衰, 对我国数学教育工作者和数学研习者很有启发。 《高观点下的初等数学》共分为三卷——第一卷“算术、代数、分析”,第二卷“几何”,第三卷“准确数学与近似数学”。
本书内容的主题是研讨包括无穷观在内的数学基础问题,“数学基础”是20世纪上半叶所诞生的一个数学分支学科,该学科专门研究如何为古今种种数学系统奠定其理论基础的问题,或者说如何为种种数学系统奠定其逻辑基础的问题,本书内容的核心主题是研讨无穷观问题,而无穷观问题的研究和争论不仅由来久远,而且广泛涉及数学、计算机科学、逻辑学和哲学等众多领域。
线性模型的一阶可解性从可分离系数的排序规则开始,发展为梯度递增的凸性规则,再到拟阵与独立系统,从而概括一大类经典问题。二阶可解性是借助限位结构,将求解途径纳入基于交错链变换的匹配型算法。可解性的另一线索是从局部的偏序关系扩张为整体的全序关系,即偏序集的线性扩张方法。进而,一旦遇到划分结构,便进入难解性境地。证明NP-困难性的方法,是运用模拟、强迫及变尺度的技巧,构造时序问题的划分模型。在判定NP-困难性之后,算法主要是隐枚举,即动态规划与分枝定界。运用动态规划建立伪多项式时间算法,为近似算法做准备。难解性问题的最终归宿是近似算法设计与分析,其中性能比分析的主导思想是运用均值下界及关键工件进行结构松弛,任意精度逼近是运用伸缩尺度方法。,概述空间模式的顺序优化,包括车行路线、电路布线、
本书源于几位作者任教的加州大学伯克利分校、斯坦福大学等高校开设的相关课程。这些课程紧随大数据时代和金融科技的热点,面向金融工程和计算金融项目的学生。当今,量化交易策略及其相关的统计模型和方法、知识表达、数据分析和算法设计以及信息学的重要性越来越高。在此背景下,本书从多学科角度对于量化交易进行了综合阐述,同时也为学术研究和金融实务搭建了桥梁。量化交易涉及多个学科,且横跨学术界与业界。几位作者结合他们在多个学科的学术背景和丰富的业界工作经验,在撰写本书过程中综合考虑了不同类型读者的核心需要。本书的目标受众既包含高年级本科生、硕士生等在校学生,也包含有志于学习量化交易领域知识和现代交易实务的交易员、量化分析师以及监管者等。考虑到目标受众的背景和兴趣的差异,本书对于章节进行了特别安排
本书包括:分析中注入严密性、实数和超限数的基础、几何基础、19世纪的数学、实变函数论、积分方程、泛函分析、发散级数等。本书是《古今数学思想》丛书中第四册,本书论述了从古代一直到20世纪头几十年中的重大数学创造和发展,目的是介绍中心思想,特别着重于那些在数学历史的主要时期中逐渐冒出来并成为最突出的、并且对于促进和形成尔后的数学活动有影响的主流工作。本书所极度关心的还有:对数学本身的看法,不同时期中这种看法的改变,以及数学家对于他们自己的成就的理解。
想象你有三只箱子,一只装有两块黑色大理石。一只装有两块白色大理石,第三只箱子则装有一块黑色和一块白色大理石。箱子上贴有标签:黑黑、白白、黑白。可是有人动了标签,现在每只箱子上的标签全错了。你每次只能从任意一只箱子里取出一块大理石,不能往里面看,并通过这个过程来确定出所有三只箱子里的大理石颜色。最少要取多少次才能办到?
域是有理数集合、实数集合、复数集合的抽象模型,因此在整个数学科学中处于基础地位。Galois是最早提出有限域观点的人,他对于抽象域理论的诞生至关重要。 本书把抽象域论一分为二,首先讲代数扩张及其在代数域论上的应用,其次介绍扩张及其在代数函数论及代数几何上的应用,中间还插入经典的Galois理论,使读者对于实际背景有比较清楚的认识。
本书是世界公认的《回归分析》标准教材(aleadingtextbookonregression)。不仅从理论上介绍了当今统计学中用到的传统回归方法,还补充介绍了尖端科学研究中不太常见的回归方法。难能可贵的是,作者有丰富的教学经验和实际应用经验,使得本书理论和应用并重,还给出实际应用中应该注意的问题。新版除利用Minitab,SAS,S-PLUS软件外,还融入了流行的JMP软件和R软件,来阐释相关技术方法。配套资源很丰富,数据、教学PPT等可免费下载。
本书在内容以及形式上有如下三个特点:一是读者直达本学科的核心内容;二是注重应用,指导读者灵活运用所掌握的知识;三是突出了直觉思维在数学学习中的作用。作者不掩饰难点以使得该学科貌似简单,而是通过揭示概念之间的内在联系和直观背景努力帮助那些对这门学科真正感兴趣的读者。 本书各章均提供了大量的例题和习题,其中一部分有相当的难度,但绝大部分是对内容
《费马大定理:一个困惑了世间智者358年的谜》是关于一个困惑了世间智者358年的谜题的传奇。《费马大定理:一个困惑了世间智者358年的谜》既有振奋人心的故事讲述方式,也有引人入胜的科学发现的历史。西蒙·辛格讲述了一个英国人,经过数年秘密辛苦的工作,终于解决了挑战性的数学问题的艰辛旅程。