本书由131个 无需语言的证明 的图片组成,每一个都非常精彩。当从一个图片中悟出为何该图片证明了相应的数学结论时,读者便能够体会到数学绝妙的美,所以这本书叫做数学写真集。书中的素材选取自国际数学杂志中一流数学家发表的文章。
本书精选了近两百个中学生能够看懂的 无字证明 . 无字证明 一般是指仅用图形而无须语言解释就能不证自明的数学结论,其形式往往是一个或一组特定的图片,有时也配有少量的解释说明.本书的每个无字证明都是一个趣题,这些无字证明涵盖了中学数学的方方面面,是罕见的直观反映数学美和数学本质的阅读材料,可作为中学生的课外读物,也可作为本科和高职师范类专业的教材.在新的课程标准强调直观想象这一核心素养的背景下,本书可满足中学和大学数学教师对教学素材的需求.
读完本书,你定会为你上学期间没机会读到这样的数学书而感到懊恼不已! 本书作者阿瑟 本杰明是享誉全球的 数学魔术师 ,他独创性地将许多人避之不及的数学与许多人津津乐道的魔术结合在一起,为众多数学恐惧症成人患者、正在学习数学的学生们开启了一个奇妙美丽的数学魔法世界。 本书堪称 12堂极简数学课 ,囊括了我们从小学到中学到大学必须掌握的12个*重要的数学概念,比如算术、代数学、几何学、三角学、微积分、圆周率、无穷大等。更重要的是,本杰明既是一名优秀的数学教授,更是一位高明的魔术师,他的魔术棒所指之处,会让我们茅塞顿开。他在书中为我们准备了神奇精彩的数学魔术、开脑洞的智力问题,让我们在这趟数学的魔法世界之旅中,从大自然中领略斐波那契数列之美,从小幽默中领会到无穷大的奥秘,从《达 芬奇密码》中窥见黄
在人类所有的发明中,数学和诗歌无疑是*古老的。可以说自从有了人类的历史,就有了这两样东西。如果说牧羊人计算绵羊的只数产生了数学,那么诗歌则起源于祈求丰收的祷告。无论数学还是诗歌,它们的故事和触角遍及人类社会的每一个角落,以及历史和生命的每一个瞬时。 《数学的故事》共分三辑,共讲述了20个如诗歌一般优美的数学故事。甲辑是中外或者东西合璧的7个数学故事;乙辑是8个有关数学家的故事,涉及10多位专业或业余的数学家;丙辑的故事围绕5个有趣的数学问题展开,深入浅出且具有一定的挑战性。 为引发同学们、老师们甚至家长们的喜爱,作者在以下几个方面做了努力: 可读性:语言质朴自然,生动有趣,留有余味。 可视性:图文并茂,有些插图是作者亲自在故事发生地拍摄的。 想象力:每则故事都不只是某一位数学家的故事,而是
朋友们,85×85=?你能瞬间算出这道数学题的答案吗?学习了本书所教授的印度吠陀数学的计算方法,2秒钟就可以给出答案。也许你会惊讶,“这是数学还是魔术?”但是,真的就有这么神奇! 印度吠陀数学的创始人巴拉蒂?克里希纳?第勒塔季在1911~1918年期间潜心研究印度古代吠陀经文,在此基础上重构了数学计算体系,并将其传播到世界各地。吠陀数学比一般的计算方法快10~15倍,其结构连贯、完美、准确且容易计算。理解了吠陀数学法则,便可以创造出自己的解题方法,也可将其运用于现代数学——代数、几何、三角函数、微积分等科目中。本书是以两位数的运算为例来阐述的,可谓是吠陀数学的入门篇。每天花十分钟做练习题,并把这些简单又神奇的法则熟记于心,这会成为以后进行熟练运算的基础。也会使你成为酷的数学达人!
癌症、疑难慢性病如何治疗和康复?本书作者通过自身的经历,对治疗“ 症”提出了一些新思路、新理念和新方法。倡导文化的医学功能,是本书的主题,也是作者三十余年与癌症和平共处的经验总结。文化的力量,比我们想象的强大。
教学是与教育相伴随的人类活动。随着社会的进步发展和对教育要求的不断提高,有效教学也日益成为人们关注的问题。有效教学的概念虽然是近些年来才在我国教育领域逐步流行起来,但从有效教学的理论层面看,它是一个与教学理论相伴生的隐性命题,因为,任何一种教学理论在学理追求上总是为有效教学辩护的,很难想象有哪一种教学理论将无效教学作为理论诉求。从这一角度看,任何教学理论都是有关有效教学的、理论。 当然,一种教学理论是否有效或者有效的程度,是要通过教学实践予以检验的。只是在检验理论的过程中,我们还需要判断理论实施的条件和边界问题,因为验证的结果与这些因素密切相关。在这个意义上,理论的有效性与其实施结果往往也不能简单地画上等号,在实际的教学改革中,理论与实践的关系是十分复杂的。本书的编写也
《解析几何的技巧(第4版)》主要内容包括:距离公式、平行四边形的顶点、过已知点的平行线、过已知点的垂线、同心圆、渐近线相同的双曲线、复数与旋转、三角形的心、法线式、一次式、表示直线的高次方程、过原点的曲线等。
《数学女孩》系列以小说的形式展开,重点描述一群年轻人探寻数学中的美。内容由浅入深,数学讲解部分十分精妙,被称为“ 赞的数学科普书”。 《数学女孩3:哥德尔不完备定理》有许多巧思。每一章针对不同议题进行解说,再于**后一章切入正题——哥德尔不完备定理。作者巧妙地以每一章的概念作为拼图,拼出与塔斯基的形式语言的真理论、图灵机和判定问题一道被誉为“现代逻辑科学在哲学方面的三大成果”的哥德尔不完备定理的大概证明。整本书一气呵成, 适合对数学感兴趣的初高中生以及成人阅读。
本书将带你 教室里的算术题和满是灰尘的教科书,去认识那些创造了无数奇迹的 的头脑。他们的故事告诉我们是什么激励和驱使他们做出了令人难以置信的发现。在这个过程中,你会遇到令人惊奇的、令人兴奋的,有时甚至是十分怪异的故事,这些故事以你从未想象过的方式将数学带入日常生活。 本书通过重要的数学家、重要的数学概念和各种形状来解释几何学的历史,展现几何学如何被用来解开自然的秘密。从简单的概念勾股定理 帮助埃及法老辛努塞尔特三世将肥沃的田地公平租赁给农民 开始,一直到当今研究的复杂几何图形,例如非欧几里得几何图形。它带领我们穿越 由数学构建的新宇宙,在这个奇妙的世界里,曲线是 直 的,甜甜圈和咖啡杯的形状 相同 。大量的彩色照片和手绘插图提供了直观形象的视觉示例。 本书适合对数学史,特别是几何
离散的对象无处不在,无所不包,其中 神奇的当属“0”和“1”这两个离散量,作为一个现代人,哪天能够离开“比特”呢?这两个离散量是构建我们现在赖以生存的网络世界的主要元素。离散数学研究离散量所具备的“离散性”正是计算机在处理现实世界时所需要的,所以离散数学与计算机领域有一种天然的紧密联系。本书讲述了与离散数学相关的历史知识、数学概念以及这些数学概念在计算机领域的应用。通过阅读本书,你会了解到离散数学在生活中的作用,体会这个世界的另一层意义。
回归诊断是对回归分析中的假设以及数据的检验与分析,研究者通常利用回归诊断检验回归分析中的假设是否合理,或者检验观测值中是否有异常数据。 本书的内容包括:回顾 小二乘线性回归,讨论多元回归中共线性的问题,处理奇异与强影响数据,探讨非正态分布误差、不一致的误差方差、非线性、离散数据产生的问题,介绍基于 似然法、计分检验和构造变量的较复杂的诊断方法。作者还探讨了如何将介绍的具体诊断方法和技术应用到研究中去。 主要特点 ·运用大量实例和数据进行讲解 ·附录提供了有关回归诊断的 深入的内容和技术细节
这本书包含了从各种数学竞赛和期刊中甄选的问题,但人们不能忽视数学的经典结果,因为它们超过了有时间的竞赛水平经典并不意味着简单!这些数学之美不仅仅可以证明初等数学可以产生珍宝,它们被许多人视为“真正的数学”,是对超越竞赛的数学的一种邀请.在这种背景下,读者远比人们想象得更为多样化。即便如此读者很容易发现这本书的许多问题是有一定难度的因此理论部分较短,重点放在问题上当然还有更微妙的结果,比如二次互异性和原根的存在性,都与线性代数或数学分析的基本结果有关本书会提供对读者有帮助的证明过程我们假定读者熟悉初等数学的经典理论,我们会自由地使用它们本书通过权衡常规练习的需要来选择问题,这种练习让你熟悉解决难题的方法而找到真正美妙解法的乐趣。
数学女孩》系列以小说的形式展开,重点描述一群年轻人探寻数学中的美。内容由浅入深,数学讲解部分十分精妙,被称为“ 赞的数学科普书”。 《数学女孩2:费马大定理》有许多巧思。每一章针对不同议题进行解说,再于末尾一章切入正题——费马大定理。作者巧妙地以每一章的概念作为拼图,拼出被称为“世纪谜题”的费马大定理的大概证明。整本书一气呵成, 适合对数学感兴趣的初高中生以及成人阅读。