9787115435590 普林斯顿微积分读本(修订版) 99.00 9787115543776 普林斯顿概率论读本 139.00 9787115543844 普林斯顿数学分析读本 69.00 《普林斯顿微积分读本(修订版)》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。 《普林斯顿概率论读本》 本书讲解概率论的基础内容, 包括组合分析、概率论公理、条件概率、离散型随机变量、 连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等, 内容丰富, 通俗易懂, 并配有丰富的例子和大量习题, 涉及物理学、生物学、化学、遗传学、博弈论、经济学等多
本书共有三角形、几何变换,三角形、圆,四边形、圆,多边形、圆,完全四边形,以及值,作图,轨迹,平面闭折线,圆的推广十个专题.对平面几何中的 500 余颗璀璨夺目的珍珠进行了系统地,全方位地介绍,其中也包括了近年来我国广大初等几何研究者的丰硕成果, 本书中的1 500 余条定理可以广阔地拓展读者的视野,极大地丰厚读者的几何知识,可以多途径地引领数学爱好者进行平面几何学的奇异旅游,欣赏平面几何中的精巧、深刻、迷人、有趣的历史名题及成果, 该书适合于广大数学爱好者及初、高中数学竞赛选手,初、高中数学教师和数学奥林匹克教练员使用,也可作为高等师范院校数学专业开设"竞赛数学""中学几何研究"等课程的教学参考书.
本书是一部综合性的数学大辞典,涵盖数理逻辑、数学基础、数论、代数学、代数几何、分析学、复分析、常微分方程、动力系统、偏微分方程、泛函分析、组合数学、图论、几何学、拓扑学、微分几何学、概率论、数理统计、计算数学、控制论、信息论、密码学、运筹学等学科,以常用、基础和重要的名词术语为基本内容,提供简短扼要的定义或概念解释,并有适度展开。正文后附有数学发展历史纪要、人名译名对照表等附录, 并设有便于检索的外文索引、汉语拼音索引。
中译本分为三卷,一卷包括第I-Ⅲ部分,第二卷即第Ⅳ部分,第三卷包括第V~Ⅷ部分。 《数学名著译丛:普林斯顿数学指南(第1卷)》 是由Fields奖得主T。Gowers主编、133位著名数学家共同参与撰写的大型文集,全书由288篇长篇论文和短篇条目构成,目的是对20世纪*后一二十年纯粹数学的发展给出一个概览,以帮助青年数学家学习和研究其*活跃的部分,这些论文和条目都可以独立阅读,原书有八个部分,除第1部分是一个简短的引论、第Ⅷ部分是全书的 终曲 以外,全书分为三大板块,核心是第Ⅳ部分 数学的各个分支 ,共26篇长文,介绍了20世纪*后一二十年纯粹数学研究中*重要的成果和*活跃的领域,第Ⅲ部分 数学概念 和第V部分 定理与问题 都是为它服务的短条目,第二个板块是数学的历史,由第Ⅱ部分 现代数学的起源 (共7篇长文)和第Ⅵ部分 数学家
本书是一部畅销欧美的数学手册,内容全面而丰富,涵盖分析学、代数学、几何学、数学基础、变分法与优化、概率论与数理统训、讨算数学与科学计算、数学史书中收录有大量的无穷级数、特殊函数、积分、积分变换、数理统计以及物理学基本常数的表格;此外还附有极为丰富的重要数学文献目录。
本书译自《燃烧理论与数值方法》英文第3版。本书从燃烧学的一些基本概念和原理入手,深入介绍了基本的燃烧理论以及如何通过数值仿真,准确、真实地实现燃烧现象。全书共10章,前3章为燃烧领域的初学者提供了良好的入门教材,第4~6章为从事湍流燃烧数值模拟的研究生和工程师提供了一个不错的参考,第8章和第10章为燃烧不稳定性领域的学者提供了一些相关知识和精彩素材,第7章的壁面与火焰相互作用和第9章的边界条件处理,为实现高保真燃烧器数值模拟提供了关键技术。全书语言流畅,图文并茂,论理清楚,实用性强,是一本燃烧学方面不可多得的经典教材。本书可作为机械工程、热能与动力工程和相近专业领域学生的教材,也可供机械、航天、航空等动力领域的研究人员参考使用。
本书汇集了历届国际数学奥林匹克竞赛试题及解答.该书广泛搜集了每道试题的多种解法,且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强.本书可归结出以下四个特点,即收集全、解法多、观点高、结论强. 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
本书以手册的形式涵盖了人们日常工作、学习所需用到的数学知识。内容包括算术、函数、几何学、线性代数、代数学、离散数学、微分学、无穷级数、积分学、微分方程、变分法、线性积分方程、泛函分析、向量分析与向量场、函数论、积分变换、概率论与数理统计、动力系统与混沌、优化、数值分析、计算机代数系统等,并专门设有数学常用表格章节,方便读者查阅。
Poincar 奖得主Barry Simon 的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。 第3部分讨论了点态极限(通过包含遍历定理和鞅收敛来超越通常关注的Hardy-Littlewood极大函数)、调和函数和位势论、框架和小波、[Math Processing Error] 空间(包括有界均值振荡(BMO))以及后一章中的许多不等式,包括Sobolev空间、Calderon-Zygmund估计和超压缩半群,进而回到第1部分的主题。 本书可供专业研究人员(数学家、部分应用数学家和物理学家)、讲授研究生阶段分析课程的教师以及在工作和学习中需要任何分析学知识的研究生阅读参考。
本卷是集合论的模型分析部分。在第一卷的基础上,本卷的主要任务是将逻辑植入集合论之中,并以此为基础实现三大目标:第一大目标是将同质子模型分析引入集合论,这是一种不同于组合分析的对无穷集合展开分析的基本方法;第二大目标则是建立集合论论域的具有典范作用的内模型??哥德尔可构造集论域,从而证明一般连续统假设和选择公理的相对相容性;第三大目标是建立集合论论域的具有典范意义的外模型??科恩的力迫扩张模型,从而证明连续统假设以及选择公理的相对独立性。这三大目标分为三章分别来实现。在一定意义上讲,每一章体现一种基本方法。这些基本方法是从事集合论研究的最基本的方法。
本书系统地阐述了微积分学的基本理论。在叙述上,作者尽量作到既严谨而又通俗易懂,并指出概念之间的内在联系和直观背景。原书分两卷,第一卷为单变量情形,第二卷为多变量情形。 第二卷中译本分为两册出版。本书是第二卷第一分册,包括前三章。第?章详论多元函数及其导数,包括线性微分型及其积分,补充了数学分析中最基本的概念的严密证明;第二章在线性代数方面为现代数学分析的基础准备了充分的材料;第三章叙述多元微分学的发展及应用,包括隐函数存在定理的严密证明,多元变换与映射的基本理论,曲线、曲面的微分几何基础知识以及外微分型等基本概念。原书有练习解答,分别编入各分册。 译者(按内容顺序):邵士敏、周建堂、张锦炎(第一章)、刘婉如(第二章)、林建详、张顺燕、朱德威(第三章)、林源渠(解答)。
Poincar 奖得主 Barry Simon 的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。 第 4 部分侧重于算子理论,尤其是 Hilbert 空间。中心主题是谱定理、迹类理论和 Fredholm 行列式,以及无界自伴算子的研究。此外还介绍了正交多项式理论和关于 Banach 代数的长章,包括交换和非交换 Gel'fand-Naimark 定理以及对一般局部紧致Abel群的Fourier分析。 本书可供专业研究人员(数学家、部分应用数学家和物理学家)、讲授研究生阶段分析课程的教师以及在工作和学习中需要任何分析学知识的研究生阅读参考。
本书系统介绍了生物数学的基本建模思路、研究方法、数据处理和数值实现方法。简明扼要地阐述了数学与生物学交叉融合的必然性与重要性,以及生物数学在种群生态学、传染病疫情预测预警、药物设计、生物资源管理与有害生物控制、细胞与分子生物学等领域的经典应用,介绍了数据与生物数学模型对接分析中常用的三种参数估计方法。为了突出生物数学是如何服务于突发重大公共卫生事件或传染病防控的,实例研究中给出了2009年封校策略与甲型H1N1流感的控制、2014年广州登革热疫情大暴发关键因子分析、雾霾防控与流感样病例数据的多尺度模型分析。本书各章均配备了习题。为了方便读者和本书的完整性,第12章给出了本书需要用到的各种数学基础知识。
随着现代科学技术的发展,不适定问题的有效求解在地质勘探、遥测遥感、图像处理、深度学习等领域发挥着日益重要的作用。所谓不适定问题,是指由于客观条件的限制,待求解问题解的存在性、唯一性或者稳定性难以保证。由于工程应用中的输入数据总是带有误差的,不适定问题稳定性的恢复,对求解实际应用问题具有特别重要的意义。 在《反问题的正则化理论和应用》前五章,我们系统阐述了求解不适定问题的正则化方法,第3章和第4章是关于线性不适定问题的求解,第5章是关于非线性不适定问题的求解。在第6章,我们研究了用正则化方法求解几类重要的应用问题,分别是慢扩散过程的逆时问题、图像处理、非局部输入数据的非线性反问题、介质逆散射问题和分数阶微分方程多参数重建,反映了作者和其研究团队近三十年来的主要研究工作。
Poincar 奖得主 Barry Simon 的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。 第 2A 部分的主题是基础复分析。它交织了三条分别与 Cauchy、Riemann 和 Weierstrass 相关的分析线索。Cauchy 的观点侧重于单复变函数的微分和积分,核心主题是 Cauchy 积分公式和周线积分。对 Riemann 来说,复平面的几何是中心内容,核心主题是分式线性变换和共形映射。对 Weierstrass 来说,幂级数是王者,核心主题是解析函数空间、Weierstrass 乘积公式和 Hadamard 乘积公式以及椭圆函数的 Weierstrass 理论。本书还包含一些其他教材中经常缺失的主题,包括:当周线是
本书是在复分析领域产生了广泛影响的一本著作。作者独辟蹊径,用丰富的图例展示各种概念、定理和证明思路,十分便于读者理解,充分揭示了复分析的数学美。书中讲述的内容有作为变换看的复函数、默比乌斯变换、微分学、非欧几何学、环绕数、复积分、柯西公式、向量场、调和函数等。
贯穿本书大部分内容的二维或三维空间的非欧几何,被视为与一组简单公理相关的、实射影几何的特例,这组公理涉及点、线、面、关联、序和连续性,未涉及距离或角度的测量。综述之后,作者从Von Staudt的思想 将点视为可以相加或相乘的实体 出发,引入齐次坐标。保持关联的变换称为直射变换,它们自然地导出等距同构或 全等变换 。遵循Bertrand Russell的建议,连续性用序来描述。通过特殊化椭圆或双曲配极 将点变换为线(二维)、面(三维),反之亦然 椭圆和双曲几何可从实射影几何派生而来。 本书的一个不同寻常的特点是,它利用一般的线性坐标变换,来推导椭圆和双曲三角函数的公式。根据Gauss的巧妙想法,三角形面积与其角度之和有关。 任何熟悉代数乃至群论基础的读者都可以从本书获益。第六版澄清了第五版的一些晦涩之处,新增的15.9节包含了
Poincar 奖得主 Barry Simon 的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。 第1部分致力于实分析。从一个角度来看,它将20世纪的微积分与极限积分(测度理论)和极限微分(分布理论)结合起来。另一方面,它展示了抽象空间的胜利:拓扑空间、Banach和Hilbert空间、测度空间、Riesz空间、Polish空间、局部凸空间、Fr chet空间、Schwartz空间和 L^(p )空间。后是对大技巧的研究,包括Fourier级数和变换、对偶空间、Baire范畴、不动点定理、概率思想和Hausdorff维数。应用包括无处可微函数的构造、Brown运动、空间填充曲线、矩问题的解、Ha
数学奥林匹克是较高层次的数学竞赛,在数学的发展中起着至关重要的作用。本书汇集了第1届至第20届中国东南地区数学奥林匹克竞赛试题及解答,内容翔实。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者参考阅读。
. 内容简介 《卓里奇数学分析教程》是作者在莫斯科大学力学数学系从60年代开始教授数学分析课程不断积累的基础上写成的,自1981年第1版出版以来,已畅销全球40年,并在一直修订增补。在此教程中作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中非常有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。 《卓里奇数学分析教程》共两卷,第1卷内容包括:集合、逻辑符号的运用、实数理论、极限和连续性、一元函数微分学、积分、多元函数及其极限与连续性、多元函数微分学。 《卓里奇数学分析教程》观点较高,内容丰富新颖,所选习题极具特色,是教材理论部分的有益补充。这套教程书可作为综合性大学和师范大
《Vlasov-Boltzmann型方程的数学理论》主要研究两类带外力场的Boltzmann方程,包括Vlasov-Poisson-Boltzmann(VPB)方程和Vlasov-Maxwell-Boltzmann(VMB)方程的谱分析与整体强解的渐近行为。主要内容包括:第1章介绍**Boltzmann方程的谱分析,并且利用谱分析建立Boltzmann方程整体强解的存在性和*优衰减速度估计;第2章介绍VPB方程的谱分析、能量估计和整体强解的存在性和*优衰减率;第3章至第4章基于谱分析研究VPB方程的格林函数和整体强解的时空点态估计,以及扩散极限的收敛性和收敛速度估计;第5章介绍VMB方程的谱分析、能量估计和整体强解的存在性和*优衰减率。《Vlasov-Boltzmann型方程的数学理论》*突出的特点是建立了带外力场的Boltzmann方程的谱分析,并且把谱分析方法应用到研究带外力场的Boltzmann方程整体强解的渐近行为,包括解的*优时间衰减率、格林函数的点态估计和流体
本书汇集了解析数论中一系列有趣的话题,是解析数论领域的入门读物,重点关注整数的剖分,即对整数的乘法结构的研究。本书涵盖了一些最重要的主题,包括算术函数的全局和局部性态、光滑数的广泛研究、Hardy-Ramanujan和Landau定理、特征和Dirichlet定理、abc猜想及其一些应用,以及筛法。本书最后还专门讲述了整数复合指数的问题。 本书每章末尾都有一系列精心挑选的问题。这些问题可以强化读者对材料的理解。作者提供了偶数号问题的解答,使得本书非常适合那些想要测试其对书中理论的理解程度的读者。
本书主要介绍了直线与平面的一些特有性质,以及立体几何中的一些基本结论与研究成果.全书共分为六章:章直线与平面,第二章多面角,第三章多面体与平行六面体,第四章四面体,第五章规则多面体,第六章曲面体. 本书适合高中师生、高等院校数学与应用数学专业师生,以及数学爱好者参考阅读.