《高观点下的初等数学》是具有世界影响的数学教育经典,由菲利克斯 克莱因根据自己在哥廷根大学为中学数学教师及学生开设的讲座所撰写,书中充满了他对数学教育的洞见,生动地展示了一流大师的风采。本书出版后被译成多种文字,影响至今不衰, 对我国数学教育工作者和数学研习者很有启发。 《高观点下的初等数学》共分为三卷 *卷 算术、代数、分析 ,第二卷 几何 ,第三卷 精确数学与近似数学 。
9787115429384 奇妙数学史 从早期的数字概念到混沌理论 49.00 9787115479945 奇妙数学史 数字与生活 49.00 9787115522733 奇妙数学史 从代数到微积分 59.00 《奇妙数学史 从早期的数字概念到混沌理论》 本书从历史的视角,向我们娓娓道来数学迷人的发展史,从古老的数学起源到现代的重大数学突破,展示了数学这一学科是如何从古巴比伦人、古希腊人和古埃及人的伟大发现,中世纪欧洲学者的发现,文艺复兴时期到现代的科学进步一步一步发展起来的。本书还介绍了那些非常重要的数学概念:从简单的算数、代数、三角、几何到微积分、无限和混沌理论。 现代数学看上去复杂深奥得可怕,但阅读本书并不需要深厚的数学知识。我们在日常生活中常常下意识地运用着数学,我们都是 民间数学家 。带上好奇心,踏上这一段让数学变得触手可及而又好玩有趣的奇幻旅程,你就会明
《微积分的奇幻旅程》9787115525062 定价:35.00 苹果有 3 个,蜜橘有 3 个,两边 同样 是 3 个。但 苹果 与 蜜橘 并不相同,如何能视为 同样 呢? 数学是一门十分重要的学问,怎样将如此重要的学问表现得直观、形象呢?教科书和习题集上是满满当当枯燥的文字、难懂的公式,犹如一堆没有灵魂的音符,这实在让人遗憾。本书作者巧妙地将图象和数学概念结合在一起,演奏了一曲华美的乐章。与考试和编程中使用的微积分知识相比,本书的内容相对简单,但不失趣味地揭示了微积分 细细切分、密密汇集 的思想,并十分形象地讲述了*值、极限、斜率、函数等知识。 奇幻旅程开始啦! 《数学定理的奇妙世界》9787115530004 定价:35.00 勾股定理应该是大家非常熟悉的数学定理,但你知道它在*初被发明时的作用吗?勾股定理早在古埃及时代就被用来测量土地的面积。数学
人类发明数学公式,来描绘浩瀚宇宙和人生百态。世界的繁华秀丽,映衬出符号公式的简洁之美。爱因斯坦的质能方程和杨振宁的规范场,摸索出宇宙 游戏的规则;费马大定理和欧拉恒等式,揭示出宇宙变化背后的数学世界;从凯利公式到贝叶斯定理,逐渐 预测人类行为;蝴蝶效应的洛伦兹方程组和三体问题,则告诉我们数学的界限。 量子学派倾心打造《公式之美》,包含23个普遍、深刻、实用的公式,书写天才们探索自然和社会的辉煌历史。
《高观点下的初等数学》是具有世界影响的数学教育经典,由菲利克斯·克莱因根据自己在哥廷根大学为中学数学教师及学生开设的讲座所撰写,书中充满了他对数学教育的洞见,生动地展示了一流大师的风采。本书出版后被译成多种文字,影响至今不衰, 对我国数学教育工作者和数学研习者很有启发。 《高观点下的初等数学》共分为三卷——第一卷“算术、代数、分析”,第二卷“几何”,第三卷“准确数学与近似数学”。
1.至今还没有一个同样无所不包的统一概念来代替牛顿关于宇宙的统一概念,要是没有牛顿明晰的体系,我们到现在为止所得到的收获,将是不可想象的。 2.牛顿由于发现了万有引力定律而创立了天文学,由于进行了光的分解而创立了科学的光学,由于创立了二项式定律和无限理论而创立了科学的数学,由于认识了力的本质而创立了科学的力学。 3.牛顿在其科学才华处于时期所撰,绘就经典力学世界图景的旷世巨典,是他 个人智慧的伟大结晶 。《自然哲学的数学原理》标志着经典力学体系的建立,是人类科学史乃至人类文明史的不朽巨著。
近代 数理逻辑学家王浩在数学、逻辑学、计算机科学领域有着超高天赋和开拓性成果,他一生痴迷于哲学研究,是对世界哲学作出过深刻贡献的华裔学者。本书是王浩的代表作,是其正面集中阐释自己哲学思想的作品。循着从柏拉图到哥德尔的“数学-哲学家”传统,王浩在书中 对实质事实主义一般立场进行了长篇阐发;广泛、深入地讨论了数学哲学的诸议题;探索了心灵与机器、数学与计算机、知识与生活等话题;还重点考察了逻辑和数学领域的一些基本概念。此次中译本 出版,由专业译者精心翻译,以助读者 好地理解王浩的数学哲学思想。
《几何原本》是古希腊数学家欧几里得的一部不朽著作,集古希腊数学的成果和精神于一书。它既是数学巨著,又极富哲学精神,并次完成了人类对空间的认识。 《几何原本》自问世之日起,在长达两千多年的时间里,经历多次翻译和修订,自1842年个印刷本出版,至今已有一千多种不同的版本,流传甚广。 《几何原本》收录了原著13卷全部内容,包括5个公设,5个公理,23条定义和467个命题,即先提出公设、公理和定义,再由简到繁予以证明,并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种思维范式的确立,对人类知识发展和形成的影响尤为巨大。
经典自守形式专题(影印版)
本书作者是美国华盛顿大学教授,具有丰富的教学经验,他在华盛顿大学和哈佛大学教授流形课程已有15年之久。书中论述了流形理论中所需的拓扑学基本概念,特别是微分几何、代数几何和相关领域。线和曲面;同伦和基本群论;圆和球;群论;Seifert-Van Kampen定理;覆盖空间;覆盖类别;同调。
Apostol的名著《微积分》教材分为第1卷和第2卷两卷,第1卷主要讲述单变量微积分,第2卷讲述多变量微积分。本书整体是按照微积分和解析几何的历史发展和科学发展的方式进行处理的。例如,先讲积分,再讲微分。这种处理方式尽管有点不符合常规,但从历史的角度和教学上来说则更加理想。第2卷是第1卷的理念的延续,技巧和理论并重。第2卷分为三个部分:线性分析、非线性分析和专题。第1卷的最后两章和第2卷的前两章是重复的,所以第2卷中讲述线性代数的部分是完整的。(第一部分)线性代数部分讲述了线性变换、行列式、特征值和二次型;同时讲述了在分析中的应用,特别是线性微分方程。(第二部分)讨论了多变量函数,并将微积分与线性代数一起讨论。讲述了标量和向量域的链式法则,以及在偏微分方程和极值问题中的应用。积分包括线积分、多重
Apostol的名著《微积分》教材分为第1卷和第2卷两卷,第1卷主要讲述单变量微积分,第2卷讲述多变量微积分。本书整体是按照微积分和解析几何的历史发展和科学发展的方式进行处理的。例如,先讲积分,再讲微分。这种处理方式尽管有点不符合常规,但从历史的角度和教学上来说则更加理想。第1卷:主要内容为单变量微积分及线性代数引入。包括:历史发展;集合论的基本观点;实数系的公理化;积分的概念;积分的应用;连续函数;微积分;积分和微分的关系;对数、指数和反三角函数;函数的多项式逼近;微分方程引入;复数;序列、无限级数和反常积分;函数序列和级数;向量代数;向量代数在解析几何中的应用;向量值函数的微积分;线性空间;线性变化和矩阵。
本书是一部有关时间序列的高等教材,这版对原来的版本通篇做了大量的修订和扩充,包括增加了全新的一章讲述状态空间。内容详尽,包括了学习时间序列能够经常用到的所有方法,书的一开始从引进Hilbert空间开始,紧接着平稳ARMA过程及其他。靠前0章有关平稳过程的谱推断很有新意,考虑频率已知和未知的周期性各种检验。 目次:平稳时间序列;Hilbert空间;平稳Arma过程;平稳过程的谱表示;平稳过程预测;渐进理论;均值和协差函数估计;Arma模型估计;应用ARIMA过程进行建模和预测;平稳过程的谱推断;多变量时间序列;状态空间模型和Kalman递归;不错话题。 读者对象:数学专业、统计概率专业的研究生和相关人士。
尽管高维可压缩定常Navier-Stokes方程的适定性理论取得了许多重要进展,然而仍然还有一些重要的数学问题未得到解决,特别地,对于绝热指数为1的三维可压缩定常Navier-Stokes方程的弱解存在性仍是公开问题,弱解的*性与正则性还不太清楚。本书所总结的相关研究进展,对于有志于解决相关公开问题的初学者既提供了入门知识,也给出了研究现状的概况,使得初学者能尽快地进入相关的研究前沿。此外,本书中所介绍的新型数学工具和新发展的技术,也会对相关研究人员研究其它偏微分方程的适定性问题提供参考。目前,已出版的关于高维可压缩定常Navier-Stokes方程理论主要针对绝热指数大于二分之三情形。本书是国内*次比较全面地、系统地介绍高维可压缩定常Navier-Stokes方程的适定性理论方面*研究成果的专著。
同步是自然界和人类社会上广泛存在的一类现象。它引起科学家的重视与注意,可追溯到惠更斯在1665年初的观察与发现,而从数学理论上进行研究,则开始于维纳在1950年代中期的工作。同步现已成为一个新兴的学科,但以往关于同步性的研究,均集中在由常微分方程组成的耦合系统。本书作者自2012年起,将同步这一个普遍现象,在概念及方法上,从常微组成的系统拓展到偏微所组成的系统,是这方面的一个首次的尝试。本书系统总结了作者在这方面的成果,对一类波动方程的耦合系统,相应于不同的边界条件,引入并建立了有关边界同步性--包括精确边界同步性与逼近边界同步性的系统理论,其特点是:通过适当选取的边界控制,人为地干预系统状态变量的发展趋势,将同步与控制相结合,使对同步的研究进入到控制的领域,为偏微系统同步性的研究提供了一个
算子理论在现代数学的许多重要领城诸如泛函分析、微分方程、指标论、表示论、数学物理中充当重要角色。本书覆盖了算子理论的中心课题,叙述清晰简洁,读者很容易与Conway的写作产生互动。 本书前几章介绍和回顾了C*-代数、正规算子、紧算子和非正规算子,主题包含谱理论、泛函演算和Fredholm指标。此外,还论述了算子理论和解析函数之间某些深刻的联系。后续章节讲述了更高级的主题,包括C*-代数的表示、紧微扰和von Neumann代数等。重要结果覆盖了诸如Sz.-Nagy伸缩定理、Weyl-von Neumann-Berg定理和von Neumann代数的分类,同样也讲述了对Fredholm理论的处理,这些高级论题均处于当今研究的中心。*后一章介绍了自返子空间,即由其不变子空间决定的算子子空间。这些连同超自返空间是现代非对称代数研究中成功的插曲之一。 Conway教授的权威性处理使本书成为一本引