《高观点下的初等数学》是具有世界影响的数学教育经典,由菲利克斯 克莱因根据自己在哥廷根大学为中学数学教师及学生开设的讲座所撰写,书中充满了他对数学教育的洞见,生动地展示了一流大师的风采。本书出版后被译成多种文字,影响至今不衰, 对我国数学教育工作者和数学研习者很有启发。 《高观点下的初等数学》共分为三卷 *卷 算术、代数、分析 ,第二卷 几何 ,第三卷 精确数学与近似数学 。
9787115429384 奇妙数学史 从早期的数字概念到混沌理论 49.00 9787115479945 奇妙数学史 数字与生活 49.00 9787115522733 奇妙数学史 从代数到微积分 59.00 《奇妙数学史 从早期的数字概念到混沌理论》 本书从历史的视角,向我们娓娓道来数学迷人的发展史,从古老的数学起源到现代的重大数学突破,展示了数学这一学科是如何从古巴比伦人、古希腊人和古埃及人的伟大发现,中世纪欧洲学者的发现,文艺复兴时期到现代的科学进步一步一步发展起来的。本书还介绍了那些非常重要的数学概念:从简单的算数、代数、三角、几何到微积分、无限和混沌理论。 现代数学看上去复杂深奥得可怕,但阅读本书并不需要深厚的数学知识。我们在日常生活中常常下意识地运用着数学,我们都是 民间数学家 。带上好奇心,踏上这一段让数学变得触手可及而又好玩有趣的奇幻旅程,你就会明
数学经常会让我们感到很困惑,数学教科书又枯燥无味,似乎只是众多的概念和定理证明的堆叠,而似乎没有尽头的题海更让我们对数学望而生畏。当遇到一个新的数学名词时,我们往往不知道为什么要引入这个概念,导致对其一知半解。 斯蒂芬 弗莱彻 休森所著的《数学桥》一书独辟蹊径,将数学知识以一种截然不同的方式展示给我们。它不是教科书,也不是普及读物,而是介于这两点之间的 普及性教科书 ;它以高中数学为起点,以一种轻松有趣的方式娓娓道来,向我们展示了大学数学中的核心内容和亮点。我们在欣赏那些令人惊叹的结果的同时,可以领略数学的自然之美和使用价值。 在《数学桥》一书中,每当引入一个新的数学概念,首先作者会介绍它的应用背景,让我们明白这个数学名词并不是数学家凭空捏造的,这样我们在学习一个数学理论时,也了解
《GeoGebra与数学实验》分两部分,部分详细介绍动态工具GeoGebra的基本操作方法;第二部分是基于GeoGebra平台的数学实验,即运用该平台将数学的内容及相关问题从几何、代数两个方面呈现出来,运用技术手段描述数学问题,理解数学问题,解决数学问题,探究数学问题,揭示数学本质,展示数学智慧,体会数学价值,享受数学之美,了解数学艺术。GeoGebra平台能直观呈现小学、初中、高中乃至大学的所有数学基本内容,是发展学生数学素养的智慧平台。
《微积分的奇幻旅程》9787115525062 定价:35.00 苹果有 3 个,蜜橘有 3 个,两边 同样 是 3 个。但 苹果 与 蜜橘 并不相同,如何能视为 同样 呢? 数学是一门十分重要的学问,怎样将如此重要的学问表现得直观、形象呢?教科书和习题集上是满满当当枯燥的文字、难懂的公式,犹如一堆没有灵魂的音符,这实在让人遗憾。本书作者巧妙地将图象和数学概念结合在一起,演奏了一曲华美的乐章。与考试和编程中使用的微积分知识相比,本书的内容相对简单,但不失趣味地揭示了微积分 细细切分、密密汇集 的思想,并十分形象地讲述了*值、极限、斜率、函数等知识。 奇幻旅程开始啦! 《数学定理的奇妙世界》9787115530004 定价:35.00 勾股定理应该是大家非常熟悉的数学定理,但你知道它在*初被发明时的作用吗?勾股定理早在古埃及时代就被用来测量土地的面积。数学
《算术研究》是被誉为“数学王子”的德国大数学家高斯的部杰作,该书写于1797年,1801年正式出版.这是一部用拉丁文写成的巨著,是数论的经典及*权威性的著作.在随后的200年时间中被翻译成多国文字,如德文、英文、俄文等. 这部著作在数学中的重要地位不亚于《圣经》在基督教中的地位,只有欧几里得的《几何原本》堪与之相比.因为高斯有一句名言:“数学是科学的女皇,数论是数学的女皇.”这部著作共七篇. 篇讨论一般的数的同余.并首次引进了同余记号,这是现代数学中无处不在的等价和分类概念出现在代数中的早的意义重大的例子. 第二篇讨论一次同余方程.其中严格证明了算术基本定理. 第三篇讨论幂的同余式.此篇详细讨论了高次同余式. 第四篇“二次同余方程”意义非同寻常.因为其中给出了二次互反律的证明,有人统计到21
《DK数学百科(全彩)》内容简介:几千年来,人类一直处于探索、发现数学真理的征途中。数学试图为伟大的思想找寻简洁的解释方法,数学致力于发现特征并总结特征。从上古时代的莱因德纸草书、芝诺运动悖论,中世纪的二项式定理、斐波那契数列,文艺复兴时期的梅森素数、帕斯卡三角形,启蒙运动时期的欧拉数、哥德巴赫猜想,19世纪的贝塞尔函数、黎曼猜想、拓扑学,到近现代的无限猴子定理、模糊逻辑、四色定理,本书介绍了数学领域的诸多伟大思想,并用通俗易懂的语言进行阐释。让我们一起翻开这本书,品味数学的优雅与美丽。
人类发明数学公式,来描绘浩瀚宇宙和人生百态。世界的繁华秀丽,映衬出符号公式的简洁之美。爱因斯坦的质能方程和杨振宁的规范场,摸索出宇宙 游戏的规则;费马大定理和欧拉恒等式,揭示出宇宙变化背后的数学世界;从凯利公式到贝叶斯定理,逐渐 预测人类行为;蝴蝶效应的洛伦兹方程组和三体问题,则告诉我们数学的界限。 量子学派倾心打造《公式之美》,包含23个普遍、深刻、实用的公式,书写天才们探索自然和社会的辉煌历史。
《群论彩图版》旨在帮助读者看到群、认识群、验证群,从而理解群的实质。《群论彩图版》通过大量的图像和直观解释来介绍群论。 《群论彩图版》的主要内容有:群是什么、群看起来像什么、为什么学习群、群的代数定义、五个群族、子群、积与商、同态的力量、西罗定理、伽罗瓦理论。每章最后一节为习题,书后附有部分习题答案。 《群论彩图版》适合抽象代数(近世代数)课程的学生和教师,也适合那些首次接触群论并需要在较短时间内理解群论的读者。 《群论彩图版》采用全彩印刷,给出了一种通过图示来学习群论的方法。主要知识点都配有详细的图示来揭示意义和重要性质。《群论彩图版》内容涵盖从群论基础和子群直到半直积和西罗定理。《群论彩图版》使学生能够“看见群”,并通过软件来做群的实验,帮助学生深入理解群的重要性质,如子群
《高观点下的初等数学》是具有世界影响的数学教育经典,由菲利克斯·克莱因根据自己在哥廷根大学为中学数学教师及学生开设的讲座所撰写,书中充满了他对数学教育的洞见,生动地展示了一流大师的风采。本书出版后被译成多种文字,影响至今不衰, 对我国数学教育工作者和数学研习者很有启发。 《高观点下的初等数学》共分为三卷——第一卷“算术、代数、分析”,第二卷“几何”,第三卷“准确数学与近似数学”。
1.至今还没有一个同样无所不包的统一概念来代替牛顿关于宇宙的统一概念,要是没有牛顿明晰的体系,我们到现在为止所得到的收获,将是不可想象的。 2.牛顿由于发现了万有引力定律而创立了天文学,由于进行了光的分解而创立了科学的光学,由于创立了二项式定律和无限理论而创立了科学的数学,由于认识了力的本质而创立了科学的力学。 3.牛顿在其科学才华处于时期所撰,绘就经典力学世界图景的旷世巨典,是他 个人智慧的伟大结晶 。《自然哲学的数学原理》标志着经典力学体系的建立,是人类科学史乃至人类文明史的不朽巨著。
上世纪六十年代罗庚师到科大来任专职副校长,使作者聆听他的教诲的机会增多,有一次他对作者讲,一个人后余下的就是一本选集,作者当时年轻,以为这是遥远的事,他这样说是为了教育作者淡泊名利,努力学习与工作,时间匆匆,到2002年作者得病之后,就经常想起罗庚师四十多年前对作者讲的这句话,作者一生坎坷,平庸,受到种种欺凌与屈辱,在此盘点人生的时候,尽管自认为一直很努力,但与那些大数学家比,作者是如此微不足道,有愧师恩。作者无学位,非院士,不过是一个普普通通的老教书匠,在后人评说的时候,不会对这样一个普普通通的教书匠的选集,过于苛求吧! 选文五十篇,为了便于查阅,按课题分类列出。
近代 数理逻辑学家王浩在数学、逻辑学、计算机科学领域有着超高天赋和开拓性成果,他一生痴迷于哲学研究,是对世界哲学作出过深刻贡献的华裔学者。本书是王浩的代表作,是其正面集中阐释自己哲学思想的作品。循着从柏拉图到哥德尔的“数学-哲学家”传统,王浩在书中 对实质事实主义一般立场进行了长篇阐发;广泛、深入地讨论了数学哲学的诸议题;探索了心灵与机器、数学与计算机、知识与生活等话题;还重点考察了逻辑和数学领域的一些基本概念。此次中译本 出版,由专业译者精心翻译,以助读者 好地理解王浩的数学哲学思想。
《几何原本》是古希腊数学家欧几里得的一部不朽著作,集古希腊数学的成果和精神于一书。它既是数学巨著,又极富哲学精神,并次完成了人类对空间的认识。 《几何原本》自问世之日起,在长达两千多年的时间里,经历多次翻译和修订,自1842年个印刷本出版,至今已有一千多种不同的版本,流传甚广。 《几何原本》收录了原著13卷全部内容,包括5个公设,5个公理,23条定义和467个命题,即先提出公设、公理和定义,再由简到繁予以证明,并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种思维范式的确立,对人类知识发展和形成的影响尤为巨大。
尽管高维可压缩定常Navier-Stokes方程的适定性理论取得了许多重要进展,然而仍然还有一些重要的数学问题未得到解决,特别地,对于绝热指数为1的三维可压缩定常Navier-Stokes方程的弱解存在性仍是公开问题,弱解的*性与正则性还不太清楚。本书所总结的相关研究进展,对于有志于解决相关公开问题的初学者既提供了入门知识,也给出了研究现状的概况,使得初学者能尽快地进入相关的研究前沿。此外,本书中所介绍的新型数学工具和新发展的技术,也会对相关研究人员研究其它偏微分方程的适定性问题提供参考。目前,已出版的关于高维可压缩定常Navier-Stokes方程理论主要针对绝热指数大于二分之三情形。本书是国内*次比较全面地、系统地介绍高维可压缩定常Navier-Stokes方程的适定性理论方面*研究成果的专著。
During the last twenty years,Chinese mathematics has experienced very impressive developments.with significant increases in international academic communications.Different levels of modern mathematical 1ecture series and summer schools(for example,the Special Mathematics Lecture Series in Beijing University since 1998) were held in many universities and research institutes.Prominent native and overseas mathematicians gave lectures on basic knowledge and recent developments in different areas of mathematics.This has provided very good opportunities for Chinese mathematics researchers and graduate students to get in touch with basic knowledge as well as ongoing research projects in mathematics.In particular,this has substantially promoted the development of young mathematicians in China. The formulation of the Lecture in Contemporary Mathematics is based on these activities and series lectures.It serves as high level,specialized textbooks for senior undergraduates,graduate students,and
经典自守形式专题(影印版)
Apostol的名著《微积分》教材分为第1卷和第2卷两卷,第1卷主要讲述单变量微积分,第2卷讲述多变量微积分。本书整体是按照微积分和解析几何的历史发展和科学发展的方式进行处理的。例如,先讲积分,再讲微分。这种处理方式尽管有点不符合常规,但从历史的角度和教学上来说则更加理想。第2卷是第1卷的理念的延续,技巧和理论并重。第2卷分为三个部分:线性分析、非线性分析和专题。第1卷的最后两章和第2卷的前两章是重复的,所以第2卷中讲述线性代数的部分是完整的。(第一部分)线性代数部分讲述了线性变换、行列式、特征值和二次型;同时讲述了在分析中的应用,特别是线性微分方程。(第二部分)讨论了多变量函数,并将微积分与线性代数一起讨论。讲述了标量和向量域的链式法则,以及在偏微分方程和极值问题中的应用。积分包括线积分、多重