本书分两部分,上部为堆垒素数论;下部为指数和的估计及其在数论中的应用。第一部分是关于堆垒素数论方面苏联维诺格拉陀夫院士的研究方法和作者自己的研究方法的总结性论著.在这部分中给予维诺格拉陀夫院士的中值定理以显著的中心地位,并且改进了它.作者把华林问题与哥德巴赫问题的研究方法结合起来,井把华林问题一方面推广到每一加数是整系数多项式的情形,一方面限制变数仅取素数值.作者把塔锐问题也加上了变数只取素数值的限制,同时又讨论到更广的素未知数的不定方程组。下部主要讨论了指数和的各种估计方法及其应用,特别讨论了这些方法对Waring问题及问题的应用.除此而外,也谈到了解析数论的其他一些问题与方法.这部分不仅综合了这几方面的结果与文献,更重要的是对其中绝大部分重要的结果都给出了较完各的提纲性的证明。
本书是作者在为研究生开设代数拓扑学课程的讲义基础上整理而成的,全书共九章,第零章为预备知识,前三章介绍单纯同调论,第四章为当前流行的范畴论,从第五章开始介绍在一般空间上的连续同调论。后四章是CW空间、一般系数的同调论、乘积空间的同调论和Steenrod运算。本书论述严谨,深入浅出,作者力图从较直观的几何概念出发引出极为抽象的概念。
《高等数学疑难问题选讲》是“高等学校大学数学教学研究与发展中心”立项资助的教学研究项目成果。《高等数学疑难问题选讲》编写的主要目的是为了帮助从事“高等数学”教学的青年教师更深刻地领会教学内容,提高教学水平和教学能力。全书分章按问题编排,各问题之间相对独立,便于读者查阅。
《高等数学引论2(英文版)Introduction to Advanced Mathematics(2)》 是我国著名数学家华罗庚在上世纪60年代编写的教材,曾在中国科学技术大学讲授。全书包含了微积分、高等代数、常微分方程、复变函数论等内容。全书反映了作者的“数学是一门有紧密内在联系的学问,应将大学数学系的基础课放在一起来讲”的教学思想,还包括了作者的“要埋有伏笔”、“生书熟讲,熟书生温”等教学技巧,书中还介绍了数学理论的不少应用。这使得本套书不同于许多现行的教科书,是一套有特色、高水平的高等数学教材。 《高等数学引论2(英文版)Introduction to Advanced Mathematics(2)》 册包括实数极限理论、微分和积分及其应用、级数理论、方程的近似解等内容、多元函数的微积分、多重级数理论、曲线及曲面、场论、Fourier级数、常微分方程组等内容;第二册主要介绍复变函
本书是一部英文的数学分析专著。本书旨在展示章节中所选主题的理论、方法和应用,这些主题似乎在近期的研究中具有重要性和使用性。本书强调以合理的细节呈现一个想法的基本发展情况,并包含了某个研究领域的近期新发展情况。本书试图以独立的方式呈现书中内容,针对每个结果提供至少一个证明,并给出足够的参考文献使感兴趣的读者可以在持续发展的领域中进行后续的研究。
生动详尽地介绍φ的方方面面。由浅入深的科学道理给您学富五车,美不胜收的精彩情节让您心动神摇,妙趣横生的丰富内容让您流连忘返……《φ的密码:解码三大数学常数》不但把φ融入整个数学以至科学之中,而且把人文精神融入其中,对提高人的综合素质,特别是培养人的健康心理大有裨益。《解码三大数学常数:φ的密码》适合具有中等及以上文化的青少年或成人阅读,也是研究φ的重要参考书。“楚兰不佩佩吴钩”,让我们佩戴李白的“吴钩”,与毕达哥拉斯、斐波那契、达?芬奇不弃不离,去寻找那“φ的密码”“我喜欢在深夜拨弄心弦,弦上黄金分割不止一点。”读了《解码三大数学常数:φ的密码》,您会成为这样的“φ迷”。
本书给出适当的理论分析,如(1)给出的Euler-Lagrange方程,它是N-S方程和一个4阶椭圆型方程的耦合系统;(2)证明相应的无限维控制系统解的存在性,可动边界N-S方程解的存在性及解对边界几何的连续依赖性;(3)N-S方程对边界形状的Gateaux导数所满足的方程以及存在性的证明。本书另一个内容是给出耦合系统数值解方法和三维旋转N-S方程维数分裂方法.这个方法的特点是用二维流形分割区域,在每个子区域(流层)上建立局部半测地坐标系,将N-S方程分解为膜算子(流形切空间上)和弯曲算子(流形的法线方向算子),然后将弯曲算子用欧氏中心差分逼近,得到二维流形上的2D-3CN-S方程,用一系列二
本书共分三卷。 上卷共分五编,分别为 编近世几何学初编,第二编几何作图题解法及其原理,第三编初等几何学作图不能问题,第四编几何作图题及数域运算,第五编奇妙的正方形。 本书适合大学生、中学生及平面几何爱好者。 中卷共分四章,分别为 章圆周的答分和正多边形,第二章线的连接,第三章比例,斜率和锥度,第四章曲线。 本书适合大学生、中学生及平面几何爱好者研读。 下卷共分六编,分别为: 编D·希尔伯特论平面几何作图问题,第二编F·克莱茵论平面几何作图问题,第三编И·И·亚历山大洛夫论平面几何作图问题,第四编Л·И·别列标尔金论平面几何作图问题,第五编考斯托夫斯基论尺规作图,第六编平面几何作图问题散论,及附录。 本书适合大学生、中学生及平面几何爱好者。
本书是高等数学教学内容的延伸与补充,除了兼有复习高等数学教学内容的功能外,又兼有拓宽高等数学知识的功能;既可以作为,高等数学素质拓展课程的教材,又可以作为高等数学部分的考研教材;与课堂教学内容同步便于自学,加深对高等数学教学内容的理解和应用;选讲的例题突出多个知识点的综合性,技巧性与解题思路;每章、节后面都附有练习题,本书后还附有综合练习题。本书内容包括:函数、极限与连续,导数与微分,微分中值定理及应用,一元函数积分学,微分方程,向量代数和空间解析几何,多元函数微分学,多元函数重积分学,无穷级数。