本书是作者根据多年从事高等代数与解析几何课程教学的经验编写而成的。本书分上、下两册。上册主要包括:空间向量、平面与直线、矩阵初步与n阶行列式、矩阵的秩与线性方程组、多项式、矩阵的相似与若尔当标准形;下册主要包括:常用曲面、二次型与矩阵的合同、线性空间、线性变换、欧氏空间。本书在编写中将二次型及其矩阵的特征值这一历史上的经典问题作为引入整个课程内容的一条叙述主线,将高等代数与解析几何有机地结合起来。本书合理地引入了每一个重要概念,给出了主要定理的推理步骤,设置了不少经典例题和习题来指导学生理解和运用这些定理。
本书由三部分内容组成。第一部分是测度论基础(第1~3章)。主要介绍测度的扩张定理和分解定理,Lebesgue-Stieltjes测度、可测函数及其积分的基本性质,还有乘积可测空间和Fubini定理等。第二部分是第4~6章。主要介绍独立随机变量序列的极限定理,包括中心极限定理、级数收敛定理、大数定律和重对数律。在介绍中心极限定理之前,介绍了测度的弱收敛、特征函数以及相关结论。这部分内容突出了经典的概率论证明技巧。第三部分为第7、8章,介绍一些特殊的随机过程。第7章介绍离散鞅论,第8章简单介绍了马氏链、布朗运动和高斯自由场。
本书作为国家精品教材同济大学数学系《高等数学》的配套用书,书中精选了大量源自各高校的各种考试试题,具有集中要点,与教学同步;多级筛选,突出重点等特点。本书可作为本科院校学生学习高等数学课程的参考用书。
《普通高等教育“十二五”规划教材:大学文科数学(第3版)》根据当前普通高等院校文科数学课程教学指导意见和教材改革精神,在第2版的基础上,由从事文科数学教学的一线教师执笔编写,深入浅出地讲解了大学文科数学的基本知识,包括:函数、极限与连续,一元函数微分学,一元函数积分学,二元函数微积分学,常微分方程简介,线性代数初步及初等概率论基础,共七章内容.每章还配备适量的例题和习题。 《普通高等教育“十二五”规划教材:大学文科数学(第3版)》注重数学思想的介绍和基本的逻辑思维训练,从不同的侧面比较自然地引人数学的基本概念,适量给出一些相关的证明过程及求解过程,由于大学文科数学的学时限制,在教材内容的选取与组织上对高等数学、线性代数及概率论课程的知识进行了必要的精简。本书结构严谨、逻辑
随着数学的不断发展,不定方程的重要性日益显著。现代数学的重要分支,如代数数论,代数几何,表示理论……都在这里交汇。不定方程几乎成为一块试金石,用以检验新的数学理论和新的数学方法。 本书是为丰富中学生的数学知识而写的小册子。 为便于学生学习,尽量使用初等方法来讨论在初等数学(特别是各级数学竞赛)中经常遇到的不定方程。学生阅读不定方程所需的一些整数知识,在本书的附录中也作了阐述,可供参考。
本书首先介绍MATLAB语言程序设计的基本内容,在此基础上系统介绍各个应用数学领域的问题求解,如基于MATLAB的微积分问题、线性代数问题的计算机求解、积分变换和复变函数问题、非线性方程与*化问题、常微分方程与偏微分方程问题、数据插值与函数逼近问题、概率论与数理统计问题的解析解和数值解法等;还介绍了较新的非传统方法,如模糊逻辑与模糊推理、神经网络、遗传算法、小波分析、粗糙集及分数阶微积分学等领域。本书可作为一般读者学习和掌握MATLAB语言的教科书,高等学校理工科各类专业的本科生和研究生学习计算机数学语言的教材或参考书,可供科技工作者、教师学习和应用MATLAB语言解决实际数学问题时参考,还可作为读者查询某数学问题求解方法的手册。
本书主要收集了四面体几何元素的位置关系研究的新成果,全书分为两篇,共十章,该书应用类比的方法,将三角形中共点、共线、共圆等性质引申推广至四面体中,并得到一系列四面体中的共点、共面、共球等性质。希望该书的出版能为读者进一步开展四面体几何学研究提供参考。本书可供中学数学教师及高中生、大学生在内的广大几何爱好者阅读,也可用作几何学及数学教育相关方向硕士研究生的教学参考书。
《高等数学疑难分析与解题方法(上)》是学习高等数学课程的一本很好的辅导书。《高等数学疑难分析与解题方法(上)》与同济大学《高等数学》第六版同步,上册内容包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用与微分方程。 《高等数学疑难分析与解题方法(上)》的特点是着重数学思想、方法的理解与应用,在疑难分析中,对概念理解与方法运用中可能产生的问题都作了详细的阐述与诠释。在解题方法中,不仅对“同济六版”中的全部习题作了详尽的解答,还补充了相当数量的例题,对高等数学的解题方法作了精彩的演绎、归纳、评点,相信读者通过学习《高等数学疑难分析与解题方法(上)》,将完全掌握高等数学的思想与方法。 《高等数学疑难分析与解题方法(上)》还附有历年研究生入学
朱开永、王升瑞主编的《高等数学(上)》是根据高等工程教育的办学定位和工程技术型人才培养的目标,参考“高等院校高等数学教学大纲与基本要求”,结合笔者多年教学实践经验编写而成。 本书分为上、下两册,此为上册。内容包含了函数与极限、一元函数微分学以及一元函数积分学。每一节和每一章后的习题和自测题书中配有答案。本书附有多媒体课件。本书在编写过程中着重把握“以应用为主,必须够用为度”,注意强调学生基本分析问题和运算能力的培养,取材少而精,文字叙述通俗易懂,论述确切;条理清晰,循序渐进;重点突出、难点分散;例题较多,典型性强;深广度合适,非常便于教与学。 本书可作为高等院校(独立学院、民办高校、网络学院)理工科专业应用型人才培养的教材,也可以作为高等工程技术教育、成人教育的本科教材
由同济大学数学系编著的《高等数学(下第3版普通高等教育十一五*规划教材)》分上下两册。 下册分4章,内容包括空间解析几何与向量代数、多元函数的微分学及其应用、多元函数的积分学及其应用、无穷级数。本书知识系统、体系结构清晰、讲解透彻、难度适宜、语言通俗、例题丰富,适合作为普通高等院校工科类、理科类(非数学专业)高等数学课程的教材使用。可供成教学院或申请升本的专科院校的学生选用,也可供相关专业人员和广大教师参考。
为了适应当前高职高专土建类专业教学改革的需要,本书以较少的篇幅涵盖了函数和极限、导数和微分及其应用、不定积分和定积分及其应用、简易的微分方程、向量与空间解析几何初步和多元函数微分法及其应用等基础理论的主要内容,共10章,每章均配有练习题和复习题(皆附有答案)。 本书选材适当,主次分明,重点突出基础性、系统性、应用性和工具性,且行文力求简明通晓,以达到易教易学、学以致用的目的。 本书可作为高职高专教育土建类专业的高等数学课程的教学用书,亦可供同层次的其他专业和各类成人高校或参加高等教育自学考试的读者作为教学和参考用书。
本书按照“高等数学课程的教学基本要求”,结合“全国硕士研究生入学考试的数学考试大纲”的要求编写而成.内容包括一元函数微积分、向量代数与空间解析几何、多元函数微积分、无穷级数、微分方程等.每章都按照高等数学的教学过程进行分节,每一节又都分为两部分:主要知识与方法、同步练习,另外还特意精选了期末考试、硕士研究生入学考试及全国大学生数学竞赛等试题。 本书可作为高等学校理工科有关专业学习高等数学课程的课后练习,也可作为考研及参加全国大学生数学竞赛的训练资料,并可供高等院校数学教师、自学考试人员及其他相关人员作参考。
本书内容根据我国普通高校本科生《高等数学课程基础要求》和*《全国硕士研究生入学统一考试数学考试大纲》高等数学部分,按照同济大学应用数学系主编的《高等数学》第五版章节顺序编写。 书中的每节由“考纲要求”、“内容提要”和“典型例题解析”三部分组成。在“考纲要求”中,列出了教学大纲和考研大纲对基本概念、基本理论和基本方法提出的要求;在“内容提要”中,对本节的知识点进行了系统梳理;在“典型例题解析”中,所选题目绝大部分来源于历年考研真题,并且对这些题目进行了分类,从而更加有利于学生的学习。
李广全主编的《高等数学》是按照新形势下教学改革的精神,依据天津市成人高等本科教育(专升本)“高等数学”课程的教学基本要求编写而成的。内容包括一元函数微积分概述、多元函数微分学、多元函数积分学、曲线积分与曲面积分、常微分方程、级数。 《高等数学》论述清晰,通俗易懂,书中结合实际给出大量的例题和习题,强化了数学的应用。书中结合数学软件“MatIlematica”开设了数学实验,为课程的学习提供了简单实用的工具,体现了时代的气息。为了适应成人教育的特征,帮助学生更好地学习和理解知识,教材配有同步练习册及助学光盘。助学光盘中包含各章的知识内容提要、各实验的操作演示录屏、教材和练习册的习题参考解答。 本书适合成人高等本科教育(专升本)工科各专业学生学习“高等数学”课程使用,也可作为其他类型本科学
本书是在《国务院关于大力发展职业教育的决定》精神的指导下,贯彻以服务为宗旨、以就业为导向、以学习者为中心,文化课要为提高学生入文素养服务、为学生专业学习提供支持的职业教育办学思想,结合当前职业院校的学生实际情况,在专家指导下,经过充分调研,由职业教育一线数学教师共同编写的。全套共两册,分《数学》(基础模块)、《数学》(专业模块)。 本书共13章。第1章为立体几何,第2章为复数,第3、4章为极限,第5~10章为微积分,第11、12章为线性代数,第13章为离散数学初步。 本书可与《数学》(基础模块)教材配套使用。可作为各类职业院校教材或参考书。
本书是《普林斯顿××读本》系列图书的第二本,该套书的论述风格友好、平易近人,通过作者与读者之间的互动对话和相关示例 清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两步式求解方法:首先展示如何回溯到求解问题的关键,之后说明如何严谨规范地写下解题过程。书中还给出了丰富的示例,帮助学生巩固所学知识。
本书是高职高专各专业通用的高等数学基础课程教材。全书共分12章,包括函数、极限与连续、导数与微分、导数的应用、不定积分、定积分及其应用、常微分方程、空间解析几何与向量代数、多元函数的微分学、多元函数的积分学、无穷级数、数学软件等内容。书中每章都有学习目标和小结,每节都配有习题,每章都配有复习题,书后附有习题和复习题答案。本书中有“*”的部分内容供教师选用。 本书坚持“以应用为目的,以必需够用为度”的原则,在不破坏数学内容系统的前提下,充分考虑到高职高专教育特点和目前的教学实际,由浅人深、循序渐进,删除了许多繁琐的理论推导和证明,从而使本书显得更通俗易懂,简明扼要。
《高等数学(经管类)》按照**制定的“经济管理类本科数学基础课程教学基本要求”编写,分上、下两册。此为上册,共5章内容,包括:函数、极限与连续,导数与微分,中值定理与导数的应用,不定积分,定积分及其应用等。书中每节后均配有适量的习题,每章之末均配有复习题。为方便读者查阅参考,在所附习题和复习题之后,都附有答案或提示。《高等数学(经管类)》条理清晰,论述确切;由浅入深,循序渐进;重点突出,难点分散;例题较多。典型性强;深广度恰当,便于教和学。它可作为普通高等院校(特别是“二本”及“三本”院校)或成人高校经管类本科或专升本学生“高等数学”课程的教材,也可供从事经济管理或金融丁作的人员,或参加国家自学考试的读者,作为自学用书或参考书。本书由刘浩荣等编著。
《面向21世纪高职高专规划教材:高等数学(第3版)》根据*制订的“高职高专数学教学基本要求”,在第2版的基础上,由多年来一直从事高职高专高等数学教学工作的一线教师执笔编写,全书系统讲解高职高专高等数学的基础知识和基本方法,内容包括函数与极限,导数与微分,导数的应用,不定积分,定积分及其应用,常微分方程,向量代数与空间解析几何简介,多元函数微分学,二重积分与曲线积分,无穷级数,本书共分10章,每章又分若干节,每节都有配套练习题,每章后有自测题,书末附有参考答案并附录预备知识及常用曲线与曲面等内容。 《面向21世纪高职高专规划教材:高等数学(第3版)》理论系统,举例丰富,讲解透彻,难度适宜,适合作为高职高专各专业的“高等数学”课程的教材使用。
《高等数学》编者(王升瑞、朱开永、朱金艳、孙玉虎)根据多年的教学经验,本着紧扣人才培养对创新意识、逻辑思维能力和素质的要求;恰当科学区分和准确定位不同学科、不同层次人才培养对数学知识的需求后,编写了这本富有特色的针对普通高校文科、职业技术教育和成人教育学生教学用的“高等数学”教材。 《高等数学》在复习有关的初等数学知识的基础上,编写了函数与极限、一元函数微分学、一元函数积分学、多元函数微分学和二重积分共五章内容。对书中的习题和自测题都配有答案。《高等数学》取材少而精,文字叙述通俗易懂;论述确切,条理清晰;由浅入深,循序渐进;例题较多,典型性强;深广度恰当,注重学生分析问题和运算能力的培养,非常便于教与学。