本书对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率、每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,数学的应用及17世纪的数学史,最后一章讨论数学的社会学、数学的心理学及数学教学。《BR》 本书内容丰富,论述严谨,可使读者了解数学的全貌、现代数学的特点及数学的应用并可提高读者对数学的兴趣。《BR》 本书由胡作玄同志翻译,张燮同志初校,沈永欢同志复校。
本书是作者根据多年从事高等代数与解析几何课程教学的经验编写而成的。本书分上、下两册。上册主要包括:空间向量、平面与直线、矩阵初步与n阶行列式、矩阵的秩与线性方程组、多项式、矩阵的相似与若尔当标准形;下册主要包括:常用曲面、二次型与矩阵的合同、线性空间、线性变换、欧氏空间。本书在编写中将二次型及其矩阵的特征值这一历史上的经典问题作为引入整个课程内容的一条叙述主线,将高等代数与解析几何有机地结合起来。本书合理地引入了每一个重要概念,给出了主要定理的推理步骤,设置了不少经典例题和习题来指导学生理解和运用这些定理。
本书由三部分内容组成。第一部分是测度论基础(第1~3章)。主要介绍测度的扩张定理和分解定理,Lebesgue-Stieltjes测度、可测函数及其积分的基本性质,还有乘积可测空间和Fubini定理等。第二部分是第4~6章。主要介绍独立随机变量序列的极限定理,包括中心极限定理、级数收敛定理、大数定律和重对数律。在介绍中心极限定理之前,介绍了测度的弱收敛、特征函数以及相关结论。这部分内容突出了经典的概率论证明技巧。第三部分为第7、8章,介绍一些特殊的随机过程。第7章介绍离散鞅论,第8章简单介绍了马氏链、布朗运动和高斯自由场。
《高等数学典型例题分析》是以同济版《高等数学》(第七版)为蓝本编写的学习辅导书,全书共分11章,内容包括:一元函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、常微分方程及其应用、向量代数空间解析几何、多元函数微分学及其应用、重积分、曲线积分与曲面积分、无穷级数,每章内容包括内容提要、例题、思考题三部分,内容提要给出相关的概念、定理和公式。例题注重对解题思想、解题方法的分析和总结,培养学生的数学思维,思考题帮助读者巩固、拓展所学数学知识。 《高等数学典型例题分析》例题典型,覆盖面广,解题方法清晰完整,解题思路分析透彻,归纳总结全面,《高等数学典型例题分析》可作为高等学校大学数学课程的教学参考书、习题课教材,以及考研复习用书,
本书作为国家精品教材同济大学数学系《高等数学》的配套用书,书中精选了大量源自各高校的各种考试试题,具有集中要点,与教学同步;多级筛选,突出重点等特点。本书可作为本科院校学生学习高等数学课程的参考用书。
《普通高等教育“十二五”规划教材:大学文科数学(第3版)》根据当前普通高等院校文科数学课程教学指导意见和教材改革精神,在第2版的基础上,由从事文科数学教学的一线教师执笔编写,深入浅出地讲解了大学文科数学的基本知识,包括:函数、极限与连续,一元函数微分学,一元函数积分学,二元函数微积分学,常微分方程简介,线性代数初步及初等概率论基础,共七章内容.每章还配备适量的例题和习题。 《普通高等教育“十二五”规划教材:大学文科数学(第3版)》注重数学思想的介绍和基本的逻辑思维训练,从不同的侧面比较自然地引人数学的基本概念,适量给出一些相关的证明过程及求解过程,由于大学文科数学的学时限制,在教材内容的选取与组织上对高等数学、线性代数及概率论课程的知识进行了必要的精简。本书结构严谨、逻辑
本书为《高等数学(同济 七版)》(上册)的配套辅导书,本书共分为7章,每章包含知识结构图、考研大纲要求、考研试卷分值统计、本章内容概述、题型与方法、考研真题解析、教材课后习题详解、目标自测题与答案共七个部分。本书主要特点:例题种类详细,知识点的结构层次清楚,内容充实,方法性强以及与考研联系紧密。本书是针对使用该教材的教师与学生的同步辅导书,也适合作为考研数学复习的参考书。
随着数学的不断发展,不定方程的重要性日益显著。现代数学的重要分支,如代数数论,代数几何,表示理论……都在这里交汇。不定方程几乎成为一块试金石,用以检验新的数学理论和新的数学方法。 本书是为丰富中学生的数学知识而写的小册子。 为便于学生学习,尽量使用初等方法来讨论在初等数学(特别是各级数学竞赛)中经常遇到的不定方程。学生阅读不定方程所需的一些整数知识,在本书的附录中也作了阐述,可供参考。
本书首先介绍MATLAB语言程序设计的基本内容,在此基础上系统介绍各个应用数学领域的问题求解,如基于MATLAB的微积分问题、线性代数问题的计算机求解、积分变换和复变函数问题、非线性方程与*化问题、常微分方程与偏微分方程问题、数据插值与函数逼近问题、概率论与数理统计问题的解析解和数值解法等;还介绍了较新的非传统方法,如模糊逻辑与模糊推理、神经网络、遗传算法、小波分析、粗糙集及分数阶微积分学等领域。本书可作为一般读者学习和掌握MATLAB语言的教科书,高等学校理工科各类专业的本科生和研究生学习计算机数学语言的教材或参考书,可供科技工作者、教师学习和应用MATLAB语言解决实际数学问题时参考,还可作为读者查询某数学问题求解方法的手册。
本书主要收集了四面体几何元素的位置关系研究的新成果,全书分为两篇,共十章,该书应用类比的方法,将三角形中共点、共线、共圆等性质引申推广至四面体中,并得到一系列四面体中的共点、共面、共球等性质。希望该书的出版能为读者进一步开展四面体几何学研究提供参考。本书可供中学数学教师及高中生、大学生在内的广大几何爱好者阅读,也可用作几何学及数学教育相关方向硕士研究生的教学参考书。
《高等数学疑难分析与解题方法(上)》是学习高等数学课程的一本很好的辅导书。《高等数学疑难分析与解题方法(上)》与同济大学《高等数学》第六版同步,上册内容包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用与微分方程。 《高等数学疑难分析与解题方法(上)》的特点是着重数学思想、方法的理解与应用,在疑难分析中,对概念理解与方法运用中可能产生的问题都作了详细的阐述与诠释。在解题方法中,不仅对“同济六版”中的全部习题作了详尽的解答,还补充了相当数量的例题,对高等数学的解题方法作了精彩的演绎、归纳、评点,相信读者通过学习《高等数学疑难分析与解题方法(上)》,将完全掌握高等数学的思想与方法。 《高等数学疑难分析与解题方法(上)》还附有历年研究生入学
《高等数学(经管类)》按照**制定的“经济管理类本科数学基础课程教学基本要求”编写,分上、下两册。此为下册,共4章内容,包括:向量代数与空间解析几何,多元函数微积分及其应用,无穷级数,常微分方程与差分方程简介等。书中每节后均配有适量的习题,每章之末均配有复习题。为方便读者查阅参考,在所附习题和复习题之后,都附有答案或提示。《高等数学(经管类)》条理清晰,论述确切;由浅入深,循序渐进;重点突出,难点分散;例题较多,典型性强;深广度恰当,便于教和学。它可作为普通高等院校(特别是“二本”及“三本”院校)或成人高校经管类本科或专升本学生“高等数学”课程的教材,也可供从事经济管理或金融工作的人员,或参加国家自学考试的读者,作为自学用书或参考书。本书由刘浩荣等编著。
一、本章知识图解:知识结构图揭示出本章知识点之间的有机联系,便于学生从总体上系统地掌握本章知识体系和核心内容。 二、教材知识全解:梳理本节知识点在各类考试中经常考查的重要知识点,用表格形式对每节涉及的基本概念、基本定理和公式进行系统的梳理,并指出在理解与应用基本概念、定理、公式时需注意的问题。 三、典型例题解析:作者基于多年的教学经验和研究生入学考试试题研究经验,将该节教材内容中学生需要掌握的、考研中经常考到的重点、难点、考点,归纳为一个个的在考试中可能出现的基本题型,并针对每一个基本题型,举出大量的精选例题深入讲解,可谓基础知识梳理、重点考点深入讲解、联系考试解题三重互动、一举突破。 四、本章整合:本章知识总结系统回顾本章知识,帮助读者更好的复习与总结;考研真题精析针对每一个
朱开永、王升瑞主编的《高等数学(上)》是根据高等工程教育的办学定位和工程技术型人才培养的目标,参考“高等院校高等数学教学大纲与基本要求”,结合笔者多年教学实践经验编写而成。 本书分为上、下两册,此为上册。内容包含了函数与极限、一元函数微分学以及一元函数积分学。每一节和每一章后的习题和自测题书中配有答案。本书附有多媒体课件。本书在编写过程中着重把握“以应用为主,必须够用为度”,注意强调学生基本分析问题和运算能力的培养,取材少而精,文字叙述通俗易懂,论述确切;条理清晰,循序渐进;重点突出、难点分散;例题较多,典型性强;深广度合适,非常便于教与学。 本书可作为高等院校(独立学院、民办高校、网络学院)理工科专业应用型人才培养的教材,也可以作为高等工程技术教育、成人教育的本科教材
由同济大学数学系编著的《高等数学(下第3版普通高等教育十一五*规划教材)》分上下两册。 下册分4章,内容包括空间解析几何与向量代数、多元函数的微分学及其应用、多元函数的积分学及其应用、无穷级数。本书知识系统、体系结构清晰、讲解透彻、难度适宜、语言通俗、例题丰富,适合作为普通高等院校工科类、理科类(非数学专业)高等数学课程的教材使用。可供成教学院或申请升本的专科院校的学生选用,也可供相关专业人员和广大教师参考。
本书配套同济大学应用数学系主编《高等数学》第五版同步辅导,可作为高等学校工科、理科各专业本科高等数学课程的同步辅导教材或复习参考书,也可作为准备报考硕士研究生同学的复习参考书。高等数学是高等学校工科各专业重要的基础理论课之一,通过本课程的教学,应使学生理解高等数学的基本概念,掌握基本理论和方法,提高抽象思维、逻辑推理、运算技能、综合运用等方面的能力。本书精选了近几年来不同题型的考研真题,并从多侧面、不同角度用多种解法进行讲解,在后给出了一些综合训练题,选取了一些综合性的题目,大部分都涉及多个知识点,加深学生对所学知识的综合运用能力的锻炼。本书集合了编者数十年的教学实践经验。初稿曾多次在工科专业的学生中结合教学使用,受到学生的欢迎,对提高教学质量,培养学生能力,起到了非常显著
为了适应当前高职高专土建类专业教学改革的需要,本书以较少的篇幅涵盖了函数和极限、导数和微分及其应用、不定积分和定积分及其应用、简易的微分方程、向量与空间解析几何初步和多元函数微分法及其应用等基础理论的主要内容,共10章,每章均配有练习题和复习题(皆附有答案)。 本书选材适当,主次分明,重点突出基础性、系统性、应用性和工具性,且行文力求简明通晓,以达到易教易学、学以致用的目的。 本书可作为高职高专教育土建类专业的高等数学课程的教学用书,亦可供同层次的其他专业和各类成人高校或参加高等教育自学考试的读者作为教学和参考用书。
《高等数学(第2版)上册》分为上、下两册。上册包括函数、极限与连续、一元函数微分学、一元函数积分学以及常微分方程初步等内容,下册包括无穷级数、空间解析几何与向量代数、多元函数微分学以及多元函数积分学等内容。每节之后配有习题,习题按照难易程度分为A和B两级。每册书末附有习题答案。 《高等数学(第2版)上册》主要强调的是微积分的运算以及运用,运用中涉及到的函数主要是初等函数。我们希望在这样一个学习过程中,初学者能够理解并接受微积分的基本思想与方法,既获得知识,获得学习其他课程的工具,也提高自己的数学素养。
本书根据当前普通高等院校文科数学课程教学指导意见和教材改革精神,在第1版的基础上,由从事文科数学教学的一线教师执笔编写。深入浅出地讲解了大学文科数学的基本知识。包括函数、极限与连续,一元函数微分学,一元函数积分学,二元函数微积分学。常微分方程简介,线性代数初步及初等概率论基础等七章内容。每章均配备了适量的例题和一定数量的习题。 本书注重数学思想的介绍和基本的逻辑思维训练,从不同的侧面比较自然地引入数学的基本概念,适量给出一些相关的证明过程及求解过程。由于大学文科数学的学时限制,在教材内容的选取与组织上对高等数学、线性代数及概率论课程的知识进行了必要的精简。本书结构严谨、逻辑清晰、通俗易懂、例证适当、难度适宜,适合作为普通高等院校文科类本专科学生系统学习大学数学基本思想和方
本书根据原国家*颁布的工科本科《高等数学课程教学基本要求》编写,是面向21世纪课程教材。 本书以“数学素质是数学教学的灵魂”为指导思想,努力突出微积分学的基本思想和基本方法,在知识、能力、素质的三维空间中构建其教学内容体系。同时,渗透现代数学的思想、概念、方法,为现代数学初步提供内容展示的“窗口”和延伸发展的“接口”。还选用了不少颇具吸引力的典型实例,以拓展数学应用的思维空间。从而使学生在总体上把握微积分学的知识框架和思想方法,以利于提高学生的数学素质与创新能力。 本书共10章,分上、下两册.第1章至第5章为上册,内容包括一元微积分学与常微分方程。第6章至第10章为下册,内容包括空间解析几何、多元微积分学与无穷级数。本书还引进了当今世界上为流行的MATHEMATICA软件,提供了9个紧密结合相关内容
网络教育是近年来的一种新的教育形式。本书的编写意在适应这种新型教育形式的需要,有助于它的蓬勃发展。本书主要供接受网络教育的工科高等院校本科学生学习高等数学课程时使用。为此,本书有以下两个特点:一方面,在教学内容的取舍、展开了深广程度上尽可能符合现行的高等工科院校《高等数学课程教学基本要求》;另一方面,在教学内容的叙述、例题的选择和习题的配置等环节上,尽可能适应网络教育的特点。 本书分为上、下两册,上册包括函数与极限,一元函数微分学,一元函数积分学与常微分方程等内容;下册包括无穷级数,空间钳子解析几何与向量代数,多元函数微分学与多元函数积分学等内容。本书习题配置的方式是:节学习之后,为了达到教学的基本要求,每个学生都需要做的习题单独编制为习题册(也相应地分为上、下两册)