本书以 Python 软件为基础, 详细介绍了数学建模的各种常用算法及其软件实现, 内容涉及高等数学、工程数学中的相关数学实验、数学规划、插值与拟合、微分方程、差分方程、评价预测、图论模型、多元分析、Monte Carlo 模拟、智能算法、时间序列分析、支持向量机、图像处理等内容, 既有对算法数学原理的详述, 又有案例和配套的 Python 程序. 本书含有 Python 快速入门基础, 可以帮助 Python 零基础的读者快速掌握Python 语言. 但对于没有其他任何编程语言基础的读者, 建议参考一些更加具体的 Python 相关书籍.
《矩阵计算》是已故美国科学院院士、美国工程院院士吉恩 戈卢布(Gene H. Golub)等人的经典巨著,是矩阵计算领域的标准性参考文献。本书系统介绍了矩阵计算的基本理论和方法.内容包括:矩阵乘法、矩阵分析、线性方程组、正交化和*小二乘法、特征值问题、Lanczos 方法、矩阵函数及专题讨论等.书中的许多算法都有现成的软件包实现,每节后附有习题,并有注释和大量参考文献.第4 版增加约四分之一内容,反映了近年来矩阵计算领域的飞速发展。
本书系统介绍了凸分析基础的五个核心部分。①涉及与凸集理论有关的线性子空间、仿射集、超平面、凸包、单纯形、闭包、内部、相对内部、凸集分离和支撑超平面等基本性质和一些重要定理。②涵盖了与凸锥有关的顶点锥、锥包、凸锥包、回收锥、共轭锥(正极锥)、负极锥、法锥与切锥、障碍锥、凸锥分离、多面体、多面锥和多面体集等基本性质和重要定理。③细述了实值(有限值)凸函数、可微凸函数、正常与非正常凸函数、复合凸函数、半连续凸函数、闭凸函数、连续凸函数和Lipschitz连续凸函数、共轭凸函数、支撑凸函数、规范凸函数、严格凸函数、半严格凸函数、显凸函数等性质和定理。④阐述了拟凸函数、半严格拟凸函数、显拟凸函数、伪凸函数、二次可微广义凸函数和广义单调性等广义凸函数的基本理论与性质。⑤讨论了凸函数的微分学基本理论,
《数论的方法》是闵嗣鹤编著的《数论的方法》上册(1958年**版)、下册(1981年**版)的合订本。《数论的方法》分三篇。**篇介绍数论中几种重要的初等方法,包括Шнирeлъман的密率论及由此发展而成的渐近密率与本性分量的理论,Brun的筛法与更精密的Selberg筛法,素数定理的初等证明与弱型Goldbach问题的初等解法等;第二篇介绍解析数论的一些基本理论与方法,包括关于黎曼ζ函数与狄氏L函数的一些基本理论及应用这些理论来研究自然数串中或一般算术级数中的素数分布的方法等;第三篇系统地论述了三角和方法,包括有理型三角和、素变数三角和及二维三角和方法等。三角和方法是数论中*重要的方法之一。作者以较少的篇幅,阐明了三角和方法的基本内容,并且给出了在哥德巴赫问题、除数问题等方面的应用。
《知识图谱与金融大数据分析》探讨了知识图谱技术及其在金融大数据分析中的创新应用。针对金融大数据的多维关联、时序多频、尖峰厚尾等特点对数据分析带来的挑战,《知识图谱与金融大数据分析》在知识图谱基础上提出了知识大图,对时序多元语义关系进行统一组织与表示,构建亿级金融知识大图。针对系统性金融风险防控、中小企业信用风控等重要问题,《知识图谱与金融大数据分析》提出了基于知识大图的体系化金融大数据分析技术方案,介绍了具有多元查询、股权穿透、舆情监测、控制计算、欺诈识别等功能的金融风控大脑,实现对金融风险的精准、实时、动态识别、评估与防控。
2019年是中华人民共和国成立70周年。70年来,中国教育学已经有了长足的发展。展望未来,新时代背景下中国教育学如何继往开来,接力发展,需要我们很好地去梳理已有的研究成果,准确定位中国教育学的发展历程和水平,明确未来的研究方向。该套丛书以国家重点课题 中华人民共和国教育学发展研究 为依托,集合全国教育学科各学科专业领军专家,作者队伍强大。从学理层面来看,教育学史越来越凸显其在教育学发展过程中的重要作用。对中国教育学史的研究,既是为了镜鉴现实,为了推动教育学术的传承和发展,又是为了推动我国教育学术的传承和发展以及为了保存和传播教育学发展的积淀。从读者需求方面来看,研究和学习教育学的人需要很好地了解本学科的发展史,明确自己研究的基础和学科定位。该丛书总共12卷本,每本书预计20万字,全套丛书预计2
该书共5章,分别介绍有限元和混合有限元理论基础及其应用。最精彩的是第4和第5章,详细介绍非定常偏微分方程有限元法中的有限元空间和有限元未知解系数向量的降维方法,可将含数十万乃至上千万未知量的有限元迭代方程降阶成为只有很少几个未知量的降阶方程,理论和数值例子都证明了两种降维方法的正确性和有效性。这些降维方法都是作者原创性的工作,这些方法都已经在国际重要刊物发表。该书很详细做了介绍。这些方法的推广应用,将会带动计算数学向更高度发展。
《数学分析中的典型问题与方法 第3版》 本书是为正在学习数学分析(微积分)的学生、准备报考研究生的读者以及从事这方面教学工作的教师编写的参考书籍。本书自1993年首次出版以来,历经25年,一直得到读者的热情赞赏和推崇。本书的中心内容是全面、系统地回答:数学分析到底有哪些基本问题?每类问题有哪些基本方法?每种方法有哪些代表性的题目?书中收录了传统典型习题和大量特色研究生入学统一考试试题,它们有相当难度,能检验读者的真实水平。本书的宗旨是讨论解题的思想方法。为此,对每种方法先以“要点”的形式作概述,再选取典型而有相当难度的例题,逐层剖析,分类讲解;然后通过反复训练,让读者从变化中领会不变的东西,达到“授人以渔”的目的。此外,对现行教材中比较薄弱、读者十分关心的部分内容,如上(下)极限、函数
《高等数学习题全解指南》 本书是与同济大学数学系编写的《高等数学》(第七版)相配套的学习辅导书,由同济大学数学系的教师编写。本书由三部分组成, 部分是按《高等数学》(第七版)(下册)的章节顺序编排,给出习题解,部分题目在解答之后对该类题的解法作了小结、归纳,有的提供了多种解法;第二部分是全国硕士研究生入学统一考试数学试题选解,所选择的试题以工学类为主,少量涉及经济学类试题;第三部分是同济大学高等数学试卷选编以及考题的参考解答。 《高等数学 上册 第7版》 本书是同济大学数学系编的《高等数学》第七版,从整体上说与第六版没有大的变化,内容深广度符合“工科类本科数学基础课程教学基本要求”,适合高等院校工科类各专业学生使用。 本次修订遵循“坚持改革、不断锤炼、打造精品”的要求,对第六版中个别
《高等代数学(第四版)》 本书是普通高等教育“十五”“十一五”和“十二五”重量规划教材.全书以线性空间为纲,在线性空间的框架下展开高等代数的主要内容. 内容包括:行列式、矩阵、线性空间、线性映射、多项式、特征值、相似标准型、二次型、内积空间和双线性型等. 本书力求深入浅出,在介绍抽象的数学概念时交代其来龙去脉,在讲解精妙的数学方法时交代其背景思路. 书中还有大量精选的例题和习题.本书是高等学校数学系的教材,也适合统计系、理工科各系,以及经济、管理类专业的学生、研究生和教师参考. 《高等代数(第四版)》 简介本书是大学本科生学习“高等代数”(或“线性代数”)的参考书. 内容包括:行列式、矩阵、线性空间与线性方程组、线性映射、多项式、特征值、相似标准型、二次型、内积空间和双线性型等. 书中有1270余道