本书对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率、每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,数学的应用及17世纪的数学史,最后一章讨论数学的社会学、数学的心理学及数学教学。《BR》 本书内容丰富,论述严谨,可使读者了解数学的全貌、现代数学的特点及数学的应用并可提高读者对数学的兴趣。《BR》 本书由胡作玄同志翻译,张燮同志初校,沈永欢同志复校。
每年都会有来自全球各地学习数学的学生和教师聚集在 奇妙的数学 暑期课程,有意练一直是课程的主要内容.本书共分为三部分,第一部分为题目,介绍了2006年至2014年 奇解题训学 暑期课程的人学测试试题;第二部分给出了所有试题的完整或者加强的解答,许多问题都给出的数种解答:第三部分为术语表,详细地介绍了本书以到的的方式将这有些问题及复杂的数学思想,但所有的问题都可以用初等的技术来解决,当然,需要以巧妙的方式将这些技术结合起来.本书可作为准备参加数学竞赛的初高中生以及想扩大数学视野的读者的参考资料.
《高等数学典型例题分析》是以同济版《高等数学》(第七版)为蓝本编写的学习辅导书,全书共分11章,内容包括:一元函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、常微分方程及其应用、向量代数空间解析几何、多元函数微分学及其应用、重积分、曲线积分与曲面积分、无穷级数,每章内容包括内容提要、例题、思考题三部分,内容提要给出相关的概念、定理和公式。例题注重对解题思想、解题方法的分析和总结,培养学生的数学思维,思考题帮助读者巩固、拓展所学数学知识。 《高等数学典型例题分析》例题典型,覆盖面广,解题方法清晰完整,解题思路分析透彻,归纳总结全面,《高等数学典型例题分析》可作为高等学校大学数学课程的教学参考书、习题课教材,以及考研复习用书,
全书遵循高等教育规律,突出高等职业教育的特点,注重对学生数学素养和应用能力的培养,体现数学建模思想。全书分为上、下两册共10章,内容包括:函数、极限与连续、导数的应用、一元函数的积分学、微分方程、向量代数与空间解析几何、多元函数微积分和无穷级数等。教材每章后附有历史的回顾与评述,主要介绍数学发展史与相关数学大师。本书对于所涉及的若干定理、推论、命题等,既不追求详细的证明过程,又不失数学理论的严谨;注重将数学建模思想融入到教学中;结合数学软件,培养学生处理数据以及求解数学模型的能力。与本书配套的辅助教材有《高等数学练习册》、《高等数学学习指导》。
邱法玉、宋金丽主编的《高等数学学习辅导与同 步练习(国家骨干高职院校基础课系列教材)》根据教 育部制定的《高职高专教育高等数学课程教学基本要 求》,以国家骨干高职高专办学方向和培养目标为指 导,兼顾各专业对高等数学知识和技能的基本需求编 写而成。 本书既从宏观上对各章知识点、重难点、内在联 系进行系统的梳理,又从微观上对重点题型、解法、 注意事项进行分门别类的总结与例题示范,有利于学 生对知识的掌握以及应用能力的提高。 本书与国家骨干高职院校系列教材《高等数学》 配套使用,一方面能做到对教材知识点的呼应、总结 与强化,另一方面题目类型全、覆盖面广,题目从基 本到综合,由易到难、循序渐进,充分注重基础知识 的巩固、基本方法和自学能力、解题能力、应用能力 以及分析问题、解决问题能力的训练
随着数学的不断发展,不定方程的重要性日益显著。现代数学的重要分支,如代数数论,代数几何,表示理论……都在这里交汇。不定方程几乎成为一块试金石,用以检验新的数学理论和新的数学方法。 本书是为丰富中学生的数学知识而写的小册子。 为便于学生学习,尽量使用初等方法来讨论在初等数学(特别是各级数学竞赛)中经常遇到的不定方程。学生阅读不定方程所需的一些整数知识,在本书的附录中也作了阐述,可供参考。
本书为《高等数学(同济 七版)》(上册)的配套辅导书,本书共分为7章,每章包含知识结构图、考研大纲要求、考研试卷分值统计、本章内容概述、题型与方法、考研真题解析、教材课后习题详解、目标自测题与答案共七个部分。本书主要特点:例题种类详细,知识点的结构层次清楚,内容充实,方法性强以及与考研联系紧密。本书是针对使用该教材的教师与学生的同步辅导书,也适合作为考研数学复习的参考书。
《高等数学复习纲要》为在校大学生复习应试及研究生报考提供了一份理清知识脉络的提纲,为复习提供线索,为应试传输信息,《高等数学复习纲要》分为:微积分(高等数学),线性代数,概率论与数理统计三个部分。 《高等数学复习纲要》可作为各类高等院校学生的学习参考书和教师的教学参考书以及科技人员的工作参考书,也可作为各类专业学生的考研复习资料。
由同济大学数学系编著的《高等数学(下第3版普通高等教育十一五*规划教材)》分上下两册。 下册分4章,内容包括空间解析几何与向量代数、多元函数的微分学及其应用、多元函数的积分学及其应用、无穷级数。本书知识系统、体系结构清晰、讲解透彻、难度适宜、语言通俗、例题丰富,适合作为普通高等院校工科类、理科类(非数学专业)高等数学课程的教材使用。可供成教学院或申请升本的专科院校的学生选用,也可供相关专业人员和广大教师参考。
《高等数学(第3版)/21世纪高校教材》共分九章,包括函数与向量、极限与连续、导数与微分、中值定理与导数的应用、定积分与不定积分、二重积分与曲线积分、微分方程、无穷级数、概率论基础. 《高等数学(第3版)/21世纪高校教材》每章配套习题与习题课结合使用,辅以复习题训练,目的是帮助读者理解、消化和复习教材主体内容,编写中注重培养学生良好的科学思维习惯及实际应用能力. 《高等数学(第3版)/21世纪高校教材》适用于应用型高等院校理工类和经济类各专业的公共数学课教学,也可供高等数学授课教师作为教参使用,以及提供给学生作考研辅导和竞赛指导使用.
高等数学是大学理工科及经济管理类专业的重要基础课,是培养学生形象思维、抽象思维、创造性思维的重要园地。 本书从浩瀚的题海中归纳、总结出的题型解法,对同学们解题具有很大的指导作用.书中的经典问题解析对教材的重点、难点进行了诠释,对同学们掌握这方面知识起到了事半功倍的效果。 本书是针对考研、参加数学竞赛的同学撰写的,对在读的本科生、专科生及数学教师同仁也具有很高的参考价值。
《高等数学解题全攻略(下卷)》从浩瀚的题海中归纳、总结出的题型解法,对同学们解题具有很大的指导作用。书中的经典问题解析对教材的重点、难点进行了诠释,对同学们掌握这方面知识起到事半功倍的效果。《高等数学解题全攻略(下卷)》是针对考研、参加数学竞赛的同学撰写的,对在读的本科生、专科生及数学教师同仁也具有很高的参考价值。
本书是依据**制定的《高职高专教育高等数学课程教学基本要求》和《高职高专教育人才培养目标及规格》编写而成的。 本书汲取了部分一线优秀教师实际教学中的教改成果和国内外同类教材的优点,更强调知识点引入的实际背景,突出知识的应用。全书内容包括函数与极限、导数与微分、导数的应用、不定积分(常微分方程简介)、定积分及其应用、多元函数微积分、无穷级数等。书中每小节都附有习题,每章还附有复习题和自测题,题型丰富、题量大,便于学生自学。书中还编写了部分数学史知识和数学应用性阅读材料,以期学生开阔视野,增加数学修养,增强应用数学知识的能力。 本书可作为三年制高职高专、成人高等学历教育的数学教材,也可作为专升本或专转本学生自学的参考教材。
本书是参照全国大学专科理工类教学大纲并考虑到高等职业教育的特点编写的。全书分上、下两册,共12章。上册内容为:函数、极限与连续,导数与微分,中值定理与导数应用,不定积分、定积分及定积分应用。 本书每节后配有一定数量的习题,每章后配有练习题及练习题、习题的解答和提示。 本书可作为大学专科、高等职业教育专科及高等函授大学、夜大学、职工大学、高等教育自学考试专科生的教材,也可供工程技术人员自学使用。
本书配套同济大学应用数学系主编《高等数学》第五版同步辅导,可作为高等学校工科、理科各专业本科高等数学课程的同步辅导教材或复习参考书,也可作为准备报考硕士研究生同学的复习参考书。高等数学是高等学校工科各专业重要的基础理论课之一,通过本课程的教学,应使学生理解高等数学的基本概念,掌握基本理论和方法,提高抽象思维、逻辑推理、运算技能、综合运用等方面的能力。本书精选了近几年来不同题型的考研真题,并从多侧面、不同角度用多种解法进行讲解,在后给出了一些综合训练题,选取了一些综合性的题目,大部分都涉及多个知识点,加深学生对所学知识的综合运用能力的锻炼。本书集合了编者数十年的教学实践经验。初稿曾多次在工科专业的学生中结合教学使用,受到学生的欢迎,对提高教学质量,培养学生能力,起到了非常显著
本书是高职高专各专业通用的高等数学基础课程教材。全书分必修篇(1~6章)和选修篇(7~9章及含*号的内容)两大部分。必修篇编入了数学建模和实例,重点讲解一元函数的微积分及其应用;选修篇包括二元函数的微积分及其应用、常微分方程简介和数学实验等内容。书中每节都配有适量的练习与思考题,每章又配有相对难度大点或综合应用的习题。每章的后还安排了“阅读材料”,既可以作为课余的休闲阅读,又丰富了对应知识点的应用,为读者提供了轻松第二课堂。后一章是与必修内容相适应的数学实验——MATLAB的使用。为便于读者查找,书后还设有附录,内容包括初等数学及高等数学中常用的公式、图形和参考答案。 本书坚持“以应用为目的,以必须够用为度”的原则,既保留了教材由浅入深、循序渐进的传统特点,又大刀阔斧地删除了许多理论推
《高等数学(经管类)》按照**制定的“经济管理类本科数学基础课程教学基本要求”编写,分上、下两册。此为上册,共5章内容,包括:函数、极限与连续,导数与微分,中值定理与导数的应用,不定积分,定积分及其应用等。书中每节后均配有适量的习题,每章之末均配有复习题。为方便读者查阅参考,在所附习题和复习题之后,都附有答案或提示。《高等数学(经管类)》条理清晰,论述确切;由浅入深,循序渐进;重点突出,难点分散;例题较多。典型性强;深广度恰当,便于教和学。它可作为普通高等院校(特别是“二本”及“三本”院校)或成人高校经管类本科或专升本学生“高等数学”课程的教材,也可供从事经济管理或金融丁作的人员,或参加国家自学考试的读者,作为自学用书或参考书。本书由刘浩荣等编著。
本书是理工科学生学习高等数学、备考以及教师教学的参考书,每章的“内容提要”系统简明,“习题选解”清晰典型,“是非题题解”引人深钻教材,“综合题题解”呈现研考水平。 本书分上、下两册出版,上册内容有:函与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分应用、空间解析几佫与向量代数。
本书根据中国数学会制订的 中国大学生数学竞赛大纲 、江苏省普通高等学校非理科专业高等数学竞赛委员会制订的 高等数学竞赛大纲 、教育 部制订的 考研数学考试大纲 编写,内容分为极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、重积分、曲线积分和曲面积分、空间解析几何、级数、微分方程九专题,每个专题又含 基本概念和内容提要 竞赛题解析 和 练习题 三个部分。本书竞赛题选自全国、江苏省、浙江省、上海市、北京市等省市普通高等学校非理科专业历届高等数学竞赛试题,南京大学等国内高校历年大学数学竞赛试题,以及莫斯科大学等国外高校大学生数学竞赛试题。本书可作为大学生参加高等数学竞赛的的培优教程,也可作为大学生学习高等数学的参考书。
为适应2l世纪对高等职业技术应用型人才的新要求,提升高等数学在技能和职业指导中作用,我们编写了这本具有高职特色的高等数学教材。 本书作为*高等职业教育基础课规划教材之一,创新点在于把学法融入读本中,把培养学生的职业精神和职业意识写进了数学教材中,突显每章节的技术性内容。 本书包括一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、向量与空间解析几何、几何级数、常微分方程、数学建模、数学软件Mathematica九个知识模块,全部学完学时不少于120学时。前二个知识模块学完后,就可以根据专业选择所需数学知识模块。本书注重对综合知识的应用,突出一定升学应试能力,对参加“专升本”考试具有一定指导意义。 本书可作为高职高专理工类和财经类各专业的通用教材,也可作为其他各专业的参考资料,
《高等数学(经管类)》按照**制定的“经济管理类本科数学基础课程教学基本要求”编写,分上、下两册。此为下册,共4章内容,包括:向量代数与空间解析几何,多元函数微积分及其应用,无穷级数,常微分方程与差分方程简介等。书中每节后均配有适量的习题,每章之末均配有复习题。为方便读者查阅参考,在所附习题和复习题之后,都附有答案或提示。《高等数学(经管类)》条理清晰,论述确切;由浅入深,循序渐进;重点突出,难点分散;例题较多,典型性强;深广度恰当,便于教和学。它可作为普通高等院校(特别是“二本”及“三本”院校)或成人高校经管类本科或专升本学生“高等数学”课程的教材,也可供从事经济管理或金融工作的人员,或参加国家自学考试的读者,作为自学用书或参考书。本书由刘浩荣等编著。