本书对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率、每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,数学的应用及17世纪的数学史,最后一章讨论数学的社会学、数学的心理学及数学教学。《BR》 本书内容丰富,论述严谨,可使读者了解数学的全貌、现代数学的特点及数学的应用并可提高读者对数学的兴趣。《BR》 本书由胡作玄同志翻译,张燮同志初校,沈永欢同志复校。
《高等数学典型例题分析》是以同济版《高等数学》(第七版)为蓝本编写的学习辅导书,全书共分11章,内容包括:一元函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、常微分方程及其应用、向量代数空间解析几何、多元函数微分学及其应用、重积分、曲线积分与曲面积分、无穷级数,每章内容包括内容提要、例题、思考题三部分,内容提要给出相关的概念、定理和公式。例题注重对解题思想、解题方法的分析和总结,培养学生的数学思维,思考题帮助读者巩固、拓展所学数学知识。 《高等数学典型例题分析》例题典型,覆盖面广,解题方法清晰完整,解题思路分析透彻,归纳总结全面,《高等数学典型例题分析》可作为高等学校大学数学课程的教学参考书、习题课教材,以及考研复习用书,
《普通高等教育“十二五”规划教材:大学文科数学(第3版)》根据当前普通高等院校文科数学课程教学指导意见和教材改革精神,在第2版的基础上,由从事文科数学教学的一线教师执笔编写,深入浅出地讲解了大学文科数学的基本知识,包括:函数、极限与连续,一元函数微分学,一元函数积分学,二元函数微积分学,常微分方程简介,线性代数初步及初等概率论基础,共七章内容.每章还配备适量的例题和习题。 《普通高等教育“十二五”规划教材:大学文科数学(第3版)》注重数学思想的介绍和基本的逻辑思维训练,从不同的侧面比较自然地引人数学的基本概念,适量给出一些相关的证明过程及求解过程,由于大学文科数学的学时限制,在教材内容的选取与组织上对高等数学、线性代数及概率论课程的知识进行了必要的精简。本书结构严谨、逻辑
本书为《高等数学(同济 七版)》(上册)的配套辅导书,本书共分为7章,每章包含知识结构图、考研大纲要求、考研试卷分值统计、本章内容概述、题型与方法、考研真题解析、教材课后习题详解、目标自测题与答案共七个部分。本书主要特点:例题种类详细,知识点的结构层次清楚,内容充实,方法性强以及与考研联系紧密。本书是针对使用该教材的教师与学生的同步辅导书,也适合作为考研数学复习的参考书。
随着数学的不断发展,不定方程的重要性日益显著。现代数学的重要分支,如代数数论,代数几何,表示理论……都在这里交汇。不定方程几乎成为一块试金石,用以检验新的数学理论和新的数学方法。 本书是为丰富中学生的数学知识而写的小册子。 为便于学生学习,尽量使用初等方法来讨论在初等数学(特别是各级数学竞赛)中经常遇到的不定方程。学生阅读不定方程所需的一些整数知识,在本书的附录中也作了阐述,可供参考。
《高等数学(第四版 下册)》的主要特色是以现代数学的观点审视经典的内容,科学组织并简洁处理相对成熟的素材,对分析、代数、几何等方面作了统一的综合处理,揭示数学的本质、联系和发展规律;注重数学概念的实际背景和几何直观的引入,强调数学建模的思想和方法;在适度运用严格数学语言的同时,注意论述方式的自然朴素、易于理解;配有丰富的图示、多样的例题和习题,便于学生理解和训练。全书的深度和广度能适应多数专业的数学基础教学需要。下册包括多元微积分、级数、常微分方程、概率论与数理统计。《高等数学(第四版 下册)》可作为高等学校理科、工科和技术学科等非数学类专业的教材,也可供经济、管理等有关专业使用,并可作为上述各专业的教学参考书。
《高等数学(第3版)/21世纪高校教材》共分九章,包括函数与向量、极限与连续、导数与微分、中值定理与导数的应用、定积分与不定积分、二重积分与曲线积分、微分方程、无穷级数、概率论基础. 《高等数学(第3版)/21世纪高校教材》每章配套习题与习题课结合使用,辅以复习题训练,目的是帮助读者理解、消化和复习教材主体内容,编写中注重培养学生良好的科学思维习惯及实际应用能力. 《高等数学(第3版)/21世纪高校教材》适用于应用型高等院校理工类和经济类各专业的公共数学课教学,也可供高等数学授课教师作为教参使用,以及提供给学生作考研辅导和竞赛指导使用.
本练习册与同济大学数学系编写的第七版《高等数学》下册(高等教育出版社出版)相配套,共包括两部分内容:练习题和参考答案。按时完成练习作业是理工科大学生巩固高等数学课堂学习效果的基本要求,所附参考答案可方便学生完成作业后及时检查。 为了方便教师和学生收交作业,本练习册分为A、B两册,即奇数周作业为A册,偶数周作业为B册。
《高等数学疑难分析与解题方法(上)》是学习高等数学课程的一本很好的辅导书。《高等数学疑难分析与解题方法(上)》与同济大学《高等数学》第六版同步,上册内容包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用与微分方程。 《高等数学疑难分析与解题方法(上)》的特点是着重数学思想、方法的理解与应用,在疑难分析中,对概念理解与方法运用中可能产生的问题都作了详细的阐述与诠释。在解题方法中,不仅对“同济六版”中的全部习题作了详尽的解答,还补充了相当数量的例题,对高等数学的解题方法作了精彩的演绎、归纳、评点,相信读者通过学习《高等数学疑难分析与解题方法(上)》,将完全掌握高等数学的思想与方法。 《高等数学疑难分析与解题方法(上)》还附有历年研究生入学
《高等数学(经管类)》按照**制定的“经济管理类本科数学基础课程教学基本要求”编写,分上、下两册。此为下册,共4章内容,包括:向量代数与空间解析几何,多元函数微积分及其应用,无穷级数,常微分方程与差分方程简介等。书中每节后均配有适量的习题,每章之末均配有复习题。为方便读者查阅参考,在所附习题和复习题之后,都附有答案或提示。《高等数学(经管类)》条理清晰,论述确切;由浅入深,循序渐进;重点突出,难点分散;例题较多,典型性强;深广度恰当,便于教和学。它可作为普通高等院校(特别是“二本”及“三本”院校)或成人高校经管类本科或专升本学生“高等数学”课程的教材,也可供从事经济管理或金融工作的人员,或参加国家自学考试的读者,作为自学用书或参考书。本书由刘浩荣等编著。
一、本章知识图解:知识结构图揭示出本章知识点之间的有机联系,便于学生从总体上系统地掌握本章知识体系和核心内容。 二、教材知识全解:梳理本节知识点在各类考试中经常考查的重要知识点,用表格形式对每节涉及的基本概念、基本定理和公式进行系统的梳理,并指出在理解与应用基本概念、定理、公式时需注意的问题。 三、典型例题解析:作者基于多年的教学经验和研究生入学考试试题研究经验,将该节教材内容中学生需要掌握的、考研中经常考到的重点、难点、考点,归纳为一个个的在考试中可能出现的基本题型,并针对每一个基本题型,举出大量的精选例题深入讲解,可谓基础知识梳理、重点考点深入讲解、联系考试解题三重互动、一举突破。 四、本章整合:本章知识总结系统回顾本章知识,帮助读者更好的复习与总结;考研真题精析针对每一个
朱开永、王升瑞主编的《高等数学(上)》是根据高等工程教育的办学定位和工程技术型人才培养的目标,参考“高等院校高等数学教学大纲与基本要求”,结合笔者多年教学实践经验编写而成。 本书分为上、下两册,此为上册。内容包含了函数与极限、一元函数微分学以及一元函数积分学。每一节和每一章后的习题和自测题书中配有答案。本书附有多媒体课件。本书在编写过程中着重把握“以应用为主,必须够用为度”,注意强调学生基本分析问题和运算能力的培养,取材少而精,文字叙述通俗易懂,论述确切;条理清晰,循序渐进;重点突出、难点分散;例题较多,典型性强;深广度合适,非常便于教与学。 本书可作为高等院校(独立学院、民办高校、网络学院)理工科专业应用型人才培养的教材,也可以作为高等工程技术教育、成人教育的本科教材
由同济大学数学系编著的《高等数学(下第3版普通高等教育十一五*规划教材)》分上下两册。 下册分4章,内容包括空间解析几何与向量代数、多元函数的微分学及其应用、多元函数的积分学及其应用、无穷级数。本书知识系统、体系结构清晰、讲解透彻、难度适宜、语言通俗、例题丰富,适合作为普通高等院校工科类、理科类(非数学专业)高等数学课程的教材使用。可供成教学院或申请升本的专科院校的学生选用,也可供相关专业人员和广大教师参考。
本书是与全国使用多的*版高等数学教材《高等数学(下册)》(第五版,同济大学应用数学系主编,高等教育出2002年7月出版)配套的教学参考书。本书既可作为高校师生教、学《高等数学(下册)》的参考书,也可作为习作课的教材,还可作为期中、期末备考及“考研”、“竞赛”的复习辅导书。 为了便于读者自学,本书编排体系基本上与主教材的章、节顺序一致(详见目录),原则上以节为单位编写,对内容少或容易学习的节适当合并为“讲”。全书含各章习作课、期末复习课共36讲,每讲2(或4)学时,共需80至90学时教完,余下的机动学时,可讲打“*”号的节或作为测试时间和加强习作课。各节(讲)包括主要公式、答疑辅导、考题(考研题和竞赛题)解析(解与分析)、教与学建议、补充与说明及习题提示等栏目;各章末都安排了一次习作课’含内容
本书配套同济大学应用数学系主编《高等数学》第五版同步辅导,可作为高等学校工科、理科各专业本科高等数学课程的同步辅导教材或复习参考书,也可作为准备报考硕士研究生同学的复习参考书。高等数学是高等学校工科各专业重要的基础理论课之一,通过本课程的教学,应使学生理解高等数学的基本概念,掌握基本理论和方法,提高抽象思维、逻辑推理、运算技能、综合运用等方面的能力。本书精选了近几年来不同题型的考研真题,并从多侧面、不同角度用多种解法进行讲解,在后给出了一些综合训练题,选取了一些综合性的题目,大部分都涉及多个知识点,加深学生对所学知识的综合运用能力的锻炼。本书集合了编者数十年的教学实践经验。初稿曾多次在工科专业的学生中结合教学使用,受到学生的欢迎,对提高教学质量,培养学生能力,起到了非常显著
为了适应当前高职高专土建类专业教学改革的需要,本书以较少的篇幅涵盖了函数和极限、导数和微分及其应用、不定积分和定积分及其应用、简易的微分方程、向量与空间解析几何初步和多元函数微分法及其应用等基础理论的主要内容,共10章,每章均配有练习题和复习题(皆附有答案)。 本书选材适当,主次分明,重点突出基础性、系统性、应用性和工具性,且行文力求简明通晓,以达到易教易学、学以致用的目的。 本书可作为高职高专教育土建类专业的高等数学课程的教学用书,亦可供同层次的其他专业和各类成人高校或参加高等教育自学考试的读者作为教学和参考用书。
本书是学习高等数学课程的一本很好的辅导书。本书与同济大学《高等数学》第六版同步,下册内容包括空间解析几何与向量代数、多元函数微分学及其应用、重积分、曲线积分与曲面积分、无穷级数。本书的特点是着重数学思想、方法的理解与应用,在疑难分析中,对概念理解与方法运用中可能产生的问题都作了详细的阐述与诠释。在解题方法中,不仅对“同济六版”中的全部习题作了详尽的解答,还补充了相当数量的例题,对高等数学的解题方法作了精彩的演绎、归纳、评点,相信读者通过学习本书,将完全掌握高等数学的思想与方法。本书还附有历年研究生入学考试题的分析解答,对读者考研复习与把握考研方向非常有益。欢迎读者选用本书与本系列丛书。
《高等数学(第2版)上册》分为上、下两册。上册包括函数、极限与连续、一元函数微分学、一元函数积分学以及常微分方程初步等内容,下册包括无穷级数、空间解析几何与向量代数、多元函数微分学以及多元函数积分学等内容。每节之后配有习题,习题按照难易程度分为A和B两级。每册书末附有习题答案。 《高等数学(第2版)上册》主要强调的是微积分的运算以及运用,运用中涉及到的函数主要是初等函数。我们希望在这样一个学习过程中,初学者能够理解并接受微积分的基本思想与方法,既获得知识,获得学习其他课程的工具,也提高自己的数学素养。
本书根据原国家*颁布的工科本科《高等数学课程教学基本要求》编写,是面向21世纪课程教材。 本书以“数学素质是数学教学的灵魂”为指导思想,努力突出微积分学的基本思想和基本方法,在知识、能力、素质的三维空间中构建其教学内容体系。同时,渗透现代数学的思想、概念、方法,为现代数学初步提供内容展示的“窗口”和延伸发展的“接口”。还选用了不少颇具吸引力的典型实例,以拓展数学应用的思维空间。从而使学生在总体上把握微积分学的知识框架和思想方法,以利于提高学生的数学素质与创新能力。 本书共10章,分上、下两册.第1章至第5章为上册,内容包括一元微积分学与常微分方程。第6章至第10章为下册,内容包括空间解析几何、多元微积分学与无穷级数。本书还引进了当今世界上为流行的MATHEMATICA软件,提供了9个紧密结合相关内容
网络教育是近年来的一种新的教育形式。本书的编写意在适应这种新型教育形式的需要,有助于它的蓬勃发展。本书主要供接受网络教育的工科高等院校本科学生学习高等数学课程时使用。为此,本书有以下两个特点:一方面,在教学内容的取舍、展开了深广程度上尽可能符合现行的高等工科院校《高等数学课程教学基本要求》;另一方面,在教学内容的叙述、例题的选择和习题的配置等环节上,尽可能适应网络教育的特点。 本书分为上、下两册,上册包括函数与极限,一元函数微分学,一元函数积分学与常微分方程等内容;下册包括无穷级数,空间钳子解析几何与向量代数,多元函数微分学与多元函数积分学等内容。本书习题配置的方式是:节学习之后,为了达到教学的基本要求,每个学生都需要做的习题单独编制为习题册(也相应地分为上、下两册)
本书是理工科学生学习高等数学、备考以及教师教学的参考书,每章的“内容提要”系统简明,“习题选解”清晰典型,“是非题题解”引人深钻教材,“综合题题解”呈现研考水平。 本书分上、下两册出版,上册内容有:函与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分应用、空间解析几佫与向量代数。
本书按照“高等数学课程的教学基本要求”,结合“全国硕士研究生入学考试的数学考试大纲”的要求编写而成.内容包括一元函数微积分、向量代数与空间解析几何、多元函数微积分、无穷级数、微分方程等.每章都按照高等数学的教学过程进行分节,每一节又都分为两部分:主要知识与方法、同步练习,另外还特意精选了期末考试、硕士研究生入学考试及全国大学生数学竞赛等试题。 本书可作为高等学校理工科有关专业学习高等数学课程的课后练习,也可作为考研及参加全国大学生数学竞赛的训练资料,并可供高等院校数学教师、自学考试人员及其他相关人员作参考。
本书内容根据我国普通高校本科生《高等数学课程基础要求》和*《全国硕士研究生入学统一考试数学考试大纲》高等数学部分,按照同济大学应用数学系主编的《高等数学》第五版章节顺序编写。 书中的每节由“考纲要求”、“内容提要”和“典型例题解析”三部分组成。在“考纲要求”中,列出了教学大纲和考研大纲对基本概念、基本理论和基本方法提出的要求;在“内容提要”中,对本节的知识点进行了系统梳理;在“典型例题解析”中,所选题目绝大部分来源于历年考研真题,并且对这些题目进行了分类,从而更加有利于学生的学习。
李广全主编的《高等数学》是按照新形势下教学改革的精神,依据天津市成人高等本科教育(专升本)“高等数学”课程的教学基本要求编写而成的。内容包括一元函数微积分概述、多元函数微分学、多元函数积分学、曲线积分与曲面积分、常微分方程、级数。 《高等数学》论述清晰,通俗易懂,书中结合实际给出大量的例题和习题,强化了数学的应用。书中结合数学软件“MatIlematica”开设了数学实验,为课程的学习提供了简单实用的工具,体现了时代的气息。为了适应成人教育的特征,帮助学生更好地学习和理解知识,教材配有同步练习册及助学光盘。助学光盘中包含各章的知识内容提要、各实验的操作演示录屏、教材和练习册的习题参考解答。 本书适合成人高等本科教育(专升本)工科各专业学生学习“高等数学”课程使用,也可作为其他类型本科学