本书共分五个部分,十四个章节,是论述群、群表示论、李群、李 代数及其应用的一本入门读物. 第一部分详述了集合,集合之间的映射,以及群的一些基本理论,如等价与分类、拉格朗日定理,以及重新排列定理等. 第二部分具体讨论了一些群,如点群、对称群、群 GL ( n , K )及 其子群,着重论述了群 O ( 3)及其子群,为了运用,又用群论方法 证明了只有五种正多面体. 第三部分,阐明了由数系扩张形成的环、域、代数等代数系,并详细地讨论了向量空间中的一系列重要空间,如商空间、对偶空间、欧几里得空间和酉空间. 第四部分, 全面且系统地阐述了有限群的表示论,并研究了四元数与三维空间的转动.从时空的均匀性和对称性得出惯性系之间的洛伦兹变换,以及将对称性与守恒量联系起来的诺特定理. 第五部分,定义了李群,引出李代数,并讨论了它们在角动量理论 及基本粒子模型中
偏微分方程是数学学科的一个分支,它和其他数学分支均有深刻的联系,而且在自然科学和工程技术中有广泛的应用。本书主要讲述广义函数与Sobolev空间、偏微分方程的一般理论、椭圆型方程的边值问题、双曲型方程或抛物型方程的初值问题与初边值问题、能量方法、半群方法等内容。以此为提高读者的整体数学素质提供合适的材料,也为部分读者进一步学习与研究偏微分方程理论做准备。
量子计算是一个多学科领域。 本书致力于利用一些 量子力学奇妙的方面扩大我们的计算视野。通过介绍面向计算机科学领域的量子计算, 本书将带领读者浏览这个引人入胜的尖端研究领域。本书以一种通俗易懂但又严谨的方式,采用了每个计算机科学的学者和学生都熟悉的方法和技术。读者无需具有任何高等数学或物理背景。前四章介绍的背景知识,包括复数,复向量空间,从经典计算到量子计算的飞跃, 和基础量子理论。在随后的七章,作者分别从计算机科学的特定角度来描述量子计算的不同方面,比如:计算机体系结构, 算法,编程语言,理论计算机科学,密码学,信息理论和硬件。本书为计算机科学专业的学生和研究人员提供循序渐进的示例,两百多个练习和相应的答案,以及应用量子计算思想的编程练习。
本书针对大学高等数学下学期的课程内容——向量代数与空间解析几何、多元函数微分法及其应用、重积分、曲线积分、曲面积分以及无穷级数——精心设计了750道经典与创新题目,并给出了相应的解题思路。书中题型规划合理,覆盖题型全面,解题思路清晰,非常适合想要打牢高等数学基础,以及准备参加专升本、研究生考试的学生使用。
本书筛选了近年来的各地高考圆锥曲线试题,内容上注重题型归类和方法总结,以便师生直接利用和进一步研究解题方法,凸显了“知识问题化”“题目典型化”“方法通俗化”的特点,并且把一些基本的、有价值的题目进行了推广,寻求通性、通法。
本书作为国家精品教材同济大学数学系《高等数学》的配套用书,书中精选了大量源自各高校的各种考试试题,具有集中要点,与教学同步;多级筛选,突出重点等特点。本书可作为本科院校学生学习高等数学课程的参考用书。
《真希望几何可以这样学》是日本著名数学教育家星田直彦所著的数学科普经典,分为“基础篇”和“提高篇”,以小学高年级和初中阶段的学习内容为主,深入浅出地讲解了几何知识。本书为基础篇,分为平面几何基础、立体几何基础和打开证明之门三个章节。本书较为重视几何语言,在进入具体图形的学习之前,用大量篇幅详细讲解了定义、命题、条件、结论、公理、定理、性质等基本概念,有助于读者区分理解。本书还将数学中的知识点用有趣的插画小故事表现出来,富有趣味性。不管是对几何略显懵懂的中小学生,还是想要重温几何基础的成年人,抑或是有教学需要的老师和家长,这本书都会是你的*佳选择,相信你能从中体会到数学的乐趣!
本书旨在引进与诠释俄罗斯著名语言学家、语言哲学家、符号学家IO.C.斯捷潘诺夫的符号学思想,为我国符号学研究注入新鲜血液。事实上,IO.C.斯捷潘诺夫的符号学思想在我国学界早有涉猎,只是鲜有系统梳理其思想脉络,凝练其理论精要者。然而,只言片语难以穷尽这座丰厚的符号学思想宝库,也无法为我国符号学学理体系建设供给有效养料。因此,本书尝试结合宏观与微观视角,分别着眼IO.C.斯捷潘诺夫的普通符号学和观念符号学思想,寻求普通和分支符号学双向学理建构的经验借鉴,为优秀理论本土化工作夯实基础。
本书分别从中国古代数学思想、益智游戏、企业管理、计算机科学、博弈论等角度出发,介绍了线性代数和矩阵理论中的相关概念和理论在上述领域的应用。通过阅读本书,读者对线性代数在实际问题中的应用会有更加直观的了解,有助于激发读者对线性代数的学习兴趣和学习热情。本书分为8章,涵盖的主要内容有线性方程组的计算、益智数字游戏中的矩阵、经营管理中的矩阵、矩阵与图片美化、计算机绘画中的矩阵、矩阵与密码设计、互联网中的矩阵、矩阵与博弈论。本书内容通俗易懂、生动有趣,特别适合中学生、大学生及各年龄层的数学爱好者作为线性代数入门读物使用。另外,本书也适合作为各类大中专院校的教学参考书使用。
本书主要介绍高等数学中300道经典习题的一题多解,这是作者在30多年教学过程中的积累和总结。书中的习题及其解法部分选自高等数学及数学分析类参考文献、国内外大学数学竞赛试题和研究生入学考试试题及其解答,部分源于作者多年的教学研究成果,其中有不少是作者编制的新题和给出的新颖解法,解法丰富多彩。每道习题均包括典型例题、特别提示及类题训练三个环节,供读者拓展解题思路、思考和练习之用,以加深对相关解题方法的理解和运用。全书例题与同类训练题总和达1500多道。习题的典型性与广泛性、解法的多样性与新颖性、解法的普适性与拓展性、类题的针对性及习题的海量性是本书的主要特色。
有限群理论是研究对称性的重要数学基础,在理论物理、量子化学、晶体学、计算机编码、量子通信、信息加密等领域有重要应用。《有限群构造新论》介绍了作者在有限群构造领域的主要研究成果。为了便于读者阅读,《有限群构造新论》详细介绍了有限群论的基本概念、基本定理及其证明,内容是自封的。主要内容为:群的基本知识,群的作用,有限幂零群与超可解群,阶为p2q2,pq3,p2q3,p3q3 的有限群的完全分类(这里p,q 是不同的素数)。《有限群构造新论》可以作为理工科专业高年级本科生、研究生参考用书,也可以作为自然科学工作者的参考读物。
本书是一本趣味横生地讲述形式逻辑主题的故事书,融合了众多读者喜闻乐见的逻辑谜题,以一种独特的方式来普及数理逻从 章到第十六章有大量的趣味谜题供读者思考,包括说谎和讲真话的逻辑、沉默的骑士和无赖等,循着本书生动活泼的语言,读者可以由浅入深地了解命题的真假和自指、推理的有效性、集合论语义学、无穷和保有效性以及形式系统的性质等逻辑学基础知识。同时,本书还提供了丰富的练习及答案,这些练习并不拘泥于符号的正确运用,而是重在让读者理解证明的构造过程。本书既可以作为普通读者走入逻辑学大门的科普书,也可以作为大学本科和研究生的补充教材。
本书依据 大学生数学竞赛大纲与江苏省普通高等学校高等数学竞赛大纲,并参照 制订的考研数学考试大纲编写而成,内容分为 限与连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、空间解析几何、级数、微分方程等八个专题,每个专题含“基本概念与内容提要”“竞赛题与精选题解析”与“练习题”三个部分。其中,竞赛题选自 大学生数学竞赛试题(非数学专业组), 硕士研究生入学考试试题,江苏省、北京市、浙江省、广东省等省市大学生数学竞赛试题,南京大学、东南大学、清华大学等高校高等数学竞赛试题,莫斯科大学等国外高校大学生数学竞赛试题.;另外,从近几年 硕士研究生入学考试试题中也挑选了一些“好题”,作为本书的有力补充。这些题目中既含基本题,又含很多构思巧妙、解题技巧性强,具有较高水平和较大难
《超级通俗考研数学:攻坚站之高等数学》的一大特点是通俗易懂,深入浅出。主要内容包括高等院校高等数学课程的所有内容,针对考研数学的特殊性进行了强化,同时对于一些传统课本中的重点、难点、疑点以及被忽视的一些潜在要点做出了全新诠释。另外,由于作者常年从事考研培训,《超级通俗考研数学:攻坚站之高等数学》还包括相当多的不传之秘——考研数学的套路。
本书是一本实用的全球定位系统?(GPS)定位程序设计工具书。它包括了GPS应用和开发中全部常用的内容。????全书共分十章,它们是:绪论、数据采集和格式转换、卫星位置计算、定位、相对定位、差分GPS定位、动态定位、辅助计算工具、GPSGLONASS组合以及菜单界面设计。本书总结了多年的工作实践和研究成果,以38种不同功能的数学模型及完整的源程序奉献给读者。????本书可供从事航空、航
本书是为适应士官教育的发展,在总参军训和兵种部院校教学局的指导下,由军队院校数学联席会组织相关院校编写而成的。内容符合国家对大专数学的教学基本要求,满足军队士官不同专业人才的培养需求。本书具有知识结构优化,注重能力培养,叙述通俗易懂,注意与中学知识衔接,反映军队特色,课程设计有弹性,可视不同要求选用等特点。本书内容包括集合与函数、极限与连续函数、一元函数的导数与微分、导数的应用、不定积分、定积分及其应用、常微分方程、空间解析几何、二元函数的微分与积分、无穷级数。本书是军队院校士官大专的数学通用教材。