本书比较全面、系统地介绍了矩阵的基本理论、方法及其应用。全书分上、下两篇,共10章,分别介绍了线性空间与线性算子,内积空间与等积变换,λ矩陈与若尔当标准形,赋范线性空间与矩阵范数,矩阵的微积分运算及其应用,广义逆矩阵及其应用,矩阵的分解,矩阵的克罗内克积、阿达马积与反积,几类特殊矩阵(如:非负矩阵与正矩阵、循环矩阵与素矩阵、随机矩阵和双随机矩阵、单调矩阵、M矩阵与H矩阵、T矩阵与汉大象尔矩阵等),辛空间与辛矩阵等内容。各章均配有一定数量的习题。附录中还给出了几套模拟自测试题。为了方便读者学习和参考,本书备有一张光盘,其中包含各章习题详解和模拟考试自测试题的解答提示等,供读者选用。 本书可作为理工科大学各专业研究生的学位课程教材,也可作为理工科和师范类院校高年级本科生的选修课教材,
本书是经典的离散数学教材,为全球多所大学广为采用。本书全面而系统地介绍了离散数学的理论和方法,内容涉及数学推理、组合分析、离散结构、算法思维以及应用与建模。全书取材广泛,除包括定义、定理的严密陈述外,还配备大量的实例和图表的说明、各种练习和题目以及丰富的历史资料和网站资源。第6版在前五版的基础上做了大量的改进,使其成为更有效的数学工具。 本书可作为高等院校数学、计算机科学和计算机工程等专业的教材或参考书。
本书共分六章,章线性代数概要与提高,总结了后续章节需要的线性方程组和矩阵的基本知识,给出了矩阵与线性方程组的几个应用实例;第二章矩阵与线性变换,讨论了子空间与直和分解及内积空间,详细研究了线性变换与矩阵的关系,简要介绍了构造新线性空间的几种方法,例举了子空间,正交性,线性变换,张量积等的应用;第三章特征值与矩阵的Jordan标准形,证明了Schur三角化定理与Cayley-Hamilton定理,给出了矩阵在相似变换下的最简形式即Jordan标准形,讨论了特征值估计的盖尔圆盘定理,介绍了特征值与特征向量在统计学和经济学中的一些应用。
ThisthirdeditionofIntroductoryCombinatoricscontainsextensiverewritingofsomesectionsandtheinclusionofsomenewmaterialandexercises.Thereisenoughmaterialinthisthirdeditionforatwo-semestercourse.Afirstsemestercouldhaveanemphasisoncountingandasecondsemesteranemphasisongraphtheory.Itisdifficulttoassesstheprerequisitesforthisbook.Perhapstheycanbebestdescribedasthemathematicalmaturityachievedbythesuccessfulcompletionofthecalculussequenceandanelementarycourseonlinearalgebra.Useofcalculusisminimal,andthereferencestolinearalgebraarefewandshouldnotcauseanyproblemtothosenotfamiliarwithit.
本书是一部经典的线性代数教科书.其内容根据作者在奠斯科大学和基辅大学的授课材料整理修订而成,曾被用作苏联高等院校的教材。全书内容包括:行列式、线性空间、线性方程组、以向量为自变量的线性函数、坐标变换、双线性型与二次型、欧几里得空间、正交化与体积的测度、不变子空间与特征向量、欧氏空间里的二次型、二次曲面和无穷维欧氏空间的几何学。 本书的特点是:一、配有大量的例题和习题;二、把线,性代数和解析几何巧妙融合在一起.在文中自然运用几何的术语和概念对代数的对象进行解释和描述;三、从有限维空间(线性代数)巧妙地过渡到无穷维空间(泛函分析),为读者学习泛函分析打下基础。