本书比较全面、系统地介绍了矩阵的基本理论、方法及其应用。全书分上、下两篇,共10章,分别介绍了线性空间与线性算子,内积空间与等积变换,λ矩陈与若尔当标准形,赋范线性空间与矩阵范数,矩阵的微积分运算及其应用,广义逆矩阵及其应用,矩阵的分解,矩阵的克罗内克积、阿达马积与反积,几类特殊矩阵(如:非负矩阵与正矩阵、循环矩阵与素矩阵、随机矩阵和双随机矩阵、单调矩阵、M矩阵与H矩阵、T矩阵与汉大象尔矩阵等),辛空间与辛矩阵等内容。各章均配有一定数量的习题。附录中还给出了几套模拟自测试题。为了方便读者学习和参考,本书备有一张光盘,其中包含各章习题详解和模拟考试自测试题的解答提示等,供读者选用。 本书可作为理工科大学各专业研究生的学位课程教材,也可作为理工科和师范类院校高年级本科生的选修课教材,
本书是经典的离散数学教材,为全球多所大学广为采用。本书全面而系统地介绍了离散数学的理论和方法,内容涉及数学推理、组合分析、离散结构、算法思维以及应用与建模。全书取材广泛,除包括定义、定理的严密陈述外,还配备大量的实例和图表的说明、各种练习和题目以及丰富的历史资料和网站资源。第6版在前五版的基础上做了大量的改进,使其成为更有效的数学工具。 本书可作为高等院校数学、计算机科学和计算机工程等专业的教材或参考书。
本书共分六章,章线性代数概要与提高,总结了后续章节需要的线性方程组和矩阵的基本知识,给出了矩阵与线性方程组的几个应用实例;第二章矩阵与线性变换,讨论了子空间与直和分解及内积空间,详细研究了线性变换与矩阵的关系,简要介绍了构造新线性空间的几种方法,例举了子空间,正交性,线性变换,张量积等的应用;第三章特征值与矩阵的Jordan标准形,证明了Schur三角化定理与Cayley-Hamilton定理,给出了矩阵在相似变换下的最简形式即Jordan标准形,讨论了特征值估计的盖尔圆盘定理,介绍了特征值与特征向量在统计学和经济学中的一些应用。
《群表示论》是作者在北京国际数学研究中心给数学基础强化班授课讲稿的基础上,结合在北京大学数学科学学院多次讲授群表示论课的心得体会编写而成,主要内容包括:有限群在特征不能整除群的阶的域上的线性表示、无限群在复(实)数域上的有限维和无限维线性表示等。《群表示论》紧紧抓住群表示论的主线——研究群的不可约表示,首先提出要研究的问题,探索如何解决问题,把深奥的群表示论知识讲得自然、清晰、易懂。在阐述无限群的线性表示理论时,本书介绍了数学上处理无限问题的典型方法,并且对于需要的拓扑学、实(复)分析以及泛函分析的知识作了详尽介绍。本书在绝大多数章节中都配有习题,并且在书末附有习题解答。 《群表示论》可作为高等院校数学系和物理系的研究生以及高年级本科生的群表示论课的教学用书,也可供数学系和物
本书以经典理论与现代应用相结合的方式介绍了初等数论的基本概念和方法,内容包括整除、同余、二次剩余、原根以及整数的阶的讨论和计算。此外,书中附有60多位对数论有贡献的数学家的传略。 本书内容丰富,趣味性强,条理清晰,既可以作为高等院校计算机及相关专业的数论教材,也可以作为对数论和密码学感兴趣的读者的初级读物。 本书是数论课程的经典教材,自出版以来,深受读者好评,被美国加州大学伯克利分校,伊利诺伊大学,得克萨斯大学等数百所名校采用。 经典理论与现代应用的结合是本书的一大特色。第5版通过增强实例和练习,将数论的应用引入了更高的境界,同时更新并扩充了对密码学这一热点论题的讨论。与时俱进是本书的又一大特色,为使本版与的研究成果及近几年的新理论优美结合,作者花费了大量心血。本书还以
本书特色:
作者是训练有素、造诣精深的数学家,曾发表过一些突破性结果。本书网述解析数论之指数和估计这一分支的一些新技术和新方法,取材于作者已发表或尚未发表的工作、为此本书首先详细讲解了经作者改进后的van der Corput方法、由作者给出的van der Corput方法正确的二维发展、以及由Bombieri等人引进的将指数和估计转化为计数问题的重要下等式。本书的主要结果,包括作者对(0,5十it)估阶等经典问题60年来运用正确的二维方法首次获得的结果(指出了Tichmarsh等人的错误)、作者对Walfisz历时50年前的一个结果的改进、作者对陈景润历时30年的一个结果的改进、作者对贾朝华和Baker历时20年的两个结果的改进、对吴杰历时10年的一个结果的改进、作者关于4-full数分布渐近公式的结果以及作者关于Able群问题迄今为止的结果,书末的附录选辑了作者自2005年以来陆续发现的当代主流
本书是一本介绍代数发展历史的科学普及读物,作者以轻松诙谐的笔触将代数几千年来的重大事件和重要人物展现出来,让读者从一个侧面对整个数学的发展有总体的认识。 本书适合中学生至大学生等各层次的数学爱好者阅读,也是研究数学史极有价值的参考读物。
本书从数学分析的角度论述矩阵分析的经典方法和现代方法,取材新,有的深度,并给出在多元微积分、复分析、微分方程、量优化、逼近理论中的许多重要应用。主要内容包括:特征值、特征向量和相似性,酉等价和正规矩阵,标准形,Hermite矩阵和对称矩阵,向量范数和矩阵范数,特征值和估计和扰动,正定矩阵,非负矩阵。 本书可作为工程、统计、经济学等专业的研究生教材和数学专业高年级本科生教材,也可作为数学工作者和科技人员的参考书。