本书比较全面、系统地介绍了矩阵的基本理论、方法及其应用。全书分上、下两篇,共10章,分别介绍了线性空间与线性算子,内积空间与等积变换,λ矩陈与若尔当标准形,赋范线性空间与矩阵范数,矩阵的微积分运算及其应用,广义逆矩阵及其应用,矩阵的分解,矩阵的克罗内克积、阿达马积与反积,几类特殊矩阵(如:非负矩阵与正矩阵、循环矩阵与素矩阵、随机矩阵和双随机矩阵、单调矩阵、M矩阵与H矩阵、T矩阵与汉大象尔矩阵等),辛空间与辛矩阵等内容。各章均配有一定数量的习题。附录中还给出了几套模拟自测试题。为了方便读者学习和参考,本书备有一张光盘,其中包含各章习题详解和模拟考试自测试题的解答提示等,供读者选用。 本书可作为理工科大学各专业研究生的学位课程教材,也可作为理工科和师范类院校高年级本科生的选修课教材,
本书是经典的离散数学教材,为全球多所大学广为采用。本书全面而系统地介绍了离散数学的理论和方法,内容涉及数学推理、组合分析、离散结构、算法思维以及应用与建模。全书取材广泛,除包括定义、定理的严密陈述外,还配备大量的实例和图表的说明、各种练习和题目以及丰富的历史资料和网站资源。第6版在前五版的基础上做了大量的改进,使其成为更有效的数学工具。 本书可作为高等院校数学、计算机科学和计算机工程等专业的教材或参考书。
本书以经典理论与现代应用相结合的方式介绍了初等数论的基本概念和方法,内容包括整除、同余、二次剩余、原根以及整数的阶的讨论和计算。此外,书中附有60多位对数论有贡献的数学家的传略。 本书内容丰富,趣味性强,条理清晰,既可以作为高等院校计算机及相关专业的数论教材,也可以作为对数论和密码学感兴趣的读者的初级读物。 本书是数论课程的经典教材,自出版以来,深受读者好评,被美国加州大学伯克利分校,伊利诺伊大学,得克萨斯大学等数百所名校采用。 经典理论与现代应用的结合是本书的一大特色。第5版通过增强实例和练习,将数论的应用引入了更高的境界,同时更新并扩充了对密码学这一热点论题的讨论。与时俱进是本书的又一大特色,为使本版与的研究成果及近几年的新理论优美结合,作者花费了大量心血。本书还以
丛书(第6辑):代数多项式》介绍了怎样应用对称条件解方程组及不等式,所有这些问题的解答都使用基于对称多项式定理的公式。 《 丛书(第6辑):代数多项式》适合于准备参加竞赛的中学生、师范学院的学生和数学教师及数学爱好者阅读。
本书特色: 经典理论与现代应用相结合。通过丰富的实例和练习,将数论的应用引入了更高的境界,同时更新并扩充了对密码学这一热点论题的讨论。 内容与时俱进。不仅融合了的研究成果和新的理论,而且还补充介绍了相关的人物传记和历史背景知识。 习题安排别出心裁。书中提供两类由易到难、富有挑战的习题:一类是计算题,另一类是上机编程练习。这使得读者能够将数学理论与编程技巧实践联系起来。此外,本书在上一版的基础上对习题进行了大量更新和修订。
《模糊粗糙集理论与方法》系统总结作者近十年来在模糊粗糙集理论方面的研究成果,以决策系统中条件属性与决策属性之间的不一致性为主线,论述基于模糊相似关系的模糊集合的上、下近似及数学结构,模糊粗糙集的数字特征,基于模糊粗糙集的属性约简,最后重点论述模糊粗糙集与核方法的内在联系。《模糊粗糙集理论与方法》的特点是首先为模糊粗糙集理论建立完备坚实的数学理论框架,在此基础之上设计属性约简和分类的算法,实现了理论分析、算法设计和实际应用的结合。 《模糊粗糙集理论与方法》的内容自成体系,既可作为应用数学和信息科学的高年级本科生和研究生的教材,也可作为相关领域的研究人员的参考书。
本书特色:
本书共分六章,章线性代数概要与提高,总结了后续章节需要的线性方程组和矩阵的基本知识,给出了矩阵与线性方程组的几个应用实例;第二章矩阵与线性变换,讨论了子空间与直和分解及内积空间,详细研究了线性变换与矩阵的关系,简要介绍了构造新线性空间的几种方法,例举了子空间,正交性,线性变换,张量积等的应用;第三章特征值与矩阵的Jordan标准形,证明了Schur三角化定理与Cayley-Hamilton定理,给出了矩阵在相似变换下的最简形式即Jordan标准形,讨论了特征值估计的盖尔圆盘定理,介绍了特征值与特征向量在统计学和经济学中的一些应用。