《高等代数探究性课题精编》包括43个高等代数探究性课题,这些课题背景丰富(素材取自于外有关资料),结论深刻有趣,题材涉及高等代数的方方面面,对各课题不过分强调技巧难度,都可以从不同层次进行探究。对每个课题都先简要阐明其背景、目的和意义,然后提出本课题的“中心问题”,让读者围绕某个中心问题自主探究。书中采用问题链的形式,给读者以启发、引导,帮助他们明晰探究思路。每个问题都附有详尽的解答,各课题中还设置探究题,以丰富探究性的层次。通过对课题的探究,可以让读者尝试数学研究的过程,获得数学创造的体验,提高不断深造的能力和创造能力,并拓宽知识视野,加深对数学本质的理解。
《数论:从同余的观点出发》依据作者多年数论教学心得和研究成果写成。从同余的定义和观点出发,前五章依次讲述整除的算法、同余的性质、同余式理论、平方剩余、原根和n次剩余,后两章是有关素数幂模和整数幂模的同余式,不在通常的初等数论范畴却伸手可触。本书的另一特点是,每节内容都有引人入胜的补充读物,借此拓宽读者的知识面和想象力。这些读物或讲述了某一数论问题的初步知识,如佩尔方程和丢番图数组、阿廷猜想和特殊指数和、椭圆曲线和同余数问题、自守形式和模形式;或介绍了整数理论的新问题和新猜想,如数问题、格雷厄姆猜想、哥德巴赫猜想、abc猜想、3x 1问题、华林问题、欧拉数问题、素数链问题、卡塔兰猜想、费尔马大定理等及其延拓。此外,本书重视语言描写,对背景知识和图表予以关注。 《数论:从同余的观点出发》可
本书以经典理论与现代应用相结合的方式介绍了初等数论的基本概念和方法,内容包括整除、同余、二次剩余、原根以及整数的阶的讨论和计算。此外,书中附有60多位对数论有贡献的数学家的传略。 本书内容丰富,趣味性强,条理清晰,既可以作为高等院校计算机及相关专业的数论教材,也可以作为对数论和密码学感兴趣的读者的初级读物。 本书是数论课程的经典教材,自出版以来,深受读者好评,被美国加州大学伯克利分校,伊利诺伊大学,得克萨斯大学等数百所名校采用。 经典理论与现代应用的结合是本书的一大特色。第5版通过增强实例和练习,将数论的应用引入了更高的境界,同时更新并扩充了对密码学这一热点论题的讨论。与时俱进是本书的又一大特色,为使本版与的研究成果及近几年的新理论优美结合,作者花费了大量心血。本书还以
丛书(第6辑):代数多项式》介绍了怎样应用对称条件解方程组及不等式,所有这些问题的解答都使用基于对称多项式定理的公式。 《 丛书(第6辑):代数多项式》适合于准备参加竞赛的中学生、师范学院的学生和数学教师及数学爱好者阅读。
《李群和李代数》是现代数学中的基本的研究对象,在整个数学大厦中占有重要的位置。如果把整个数学看成一个按重要性从中心往外发展的一个系统,那么李群和李代数必定位于这一系统的中心附近。本书由赵旭安编著。
本书特色: 经典理论与现代应用相结合。通过丰富的实例和练习,将数论的应用引入了更高的境界,同时更新并扩充了对密码学这一热点论题的讨论。 内容与时俱进。不仅融合了的研究成果和新的理论,而且还补充介绍了相关的人物传记和历史背景知识。 习题安排别出心裁。书中提供两类由易到难、富有挑战的习题:一类是计算题,另一类是上机编程练习。这使得读者能够将数学理论与编程技巧实践联系起来。此外,本书在上一版的基础上对习题进行了大量更新和修订。
本书特色:
《高等代数方法与技巧》通过高等代数的知识点及近年来研究生入学试题进行分析和研究,把高等代数的解题方法归纳为50类,以此帮助读者进一步理解和把握高等代数的思想内涵,掌握并学会高等代数的证题方法和技巧。本书作为临沂大学校本教材,经学校立项并由山东人民出版社正式出版发行。本书既可作为大学数学专业高等代数后继课程的教材、作为数学专业研究生考试的辅导教材,也可作为理工科各专业讲授线性代数教学和学生自学的辅导参考书。
《数学四色问题证明》详细地介绍了四色问题的数学证明方法,即在证明了三次平面图形成定理、边二色回路定理和面二色通路定理的基础上,进而证明了四色问题成立。这些证明的思路和方法,对于启发人们数学思考的多样化和推动基础数学研究的发展是大有益处的。本书由时徐俊杰著。
This exposition of Galois theory was originally going to be Chapter I of the continuation of my book Ferrnat's Last Theorem, but it soon outgrew any reasonable bounds for an introductory chapter, and I decided to make it a separate book. However, this decision was prompted by more than just the length. Following the precepts of my sermon "Read the Masters!" [E2], Imade the reading of Galois' original memoir a major part of my study of Galois theory, and I saw that the modern treatments of Galois theory lacked much of the simplicity and clarity of the original. Therefore I wanted to write about the theory in a way that would not only explain it, but explain it in terms close enough to Galois' own to make his memoir accessible to the reader, in the same way that I tried to make Riemann's memoir on the zeta function and Kummer's papers on Fermat's Last Theorem accessible in my earlier books, [Eli and [E3]. Clearly I could not do this within the confines of one expository chapter
《矩阵分析》旨在为读者提供泛函分析的精髓矩阵分析。算子理论,算子代数,数学物理和数值分析专业的研究生和科研人员将对《矩阵分析》感兴趣。《矩阵分析:英文(影印版)》可以作为高等线性代数和矩阵分析方向的研究生基础教程,也可以作为算子理论和数值分析方向的补充教程,包括的核心思想有化理论,特征值的变分原理,算子单调性和凸分析,矩阵函数的扰动和矩阵不等式。这些内容大多数都是次以《矩阵分析》中这么独特的方式讲述。读者将会从书中学到很多强大的工具、广泛的应用技巧以及和数学专业其他领域之间的联系。矩阵不等式使得《矩阵分析》对数值分析,数学物理和算子理论专业中学生,科研人员的参考价值凸显。 读者对象:适用于数学专业的研究生,科研人员以及化感兴趣的有关人员。
本辅导教材由以下几部分组成: 1.基本要求、重点与难点:列出相应各章的基本要求、重点、难点内容,以帮助读者总体把握本章内容。 2.主要概念与公式:列出各章的基本概念:定理与公式,突出必须掌握和理解的核心内容。 3.典型例题分析:精选历年各院校研究生入学考试试题中具有代表性的试题进行了详细的解答,这些例题涉及内容广、题型多、技巧性强,可以使广大同学举一反三、触类旁通,开拓解题思路,更好地掌握高等代数的基本内容和解题方法。 4.课后习题全解:教材中课后习题数量大、层次多,许多基础性问题从多个角度帮助理解基本概念和基本理论,锤炼读者基本的解题方法,许多层次较高的问题有助于广大读者进一步的提高和应用,不少问题具有独特的解题思路和方法。针对以上两点,我们对教材课后习题给出了详细的解
本书共分六章,章线性代数概要与提高,总结了后续章节需要的线性方程组和矩阵的基本知识,给出了矩阵与线性方程组的几个应用实例;第二章矩阵与线性变换,讨论了子空间与直和分解及内积空间,详细研究了线性变换与矩阵的关系,简要介绍了构造新线性空间的几种方法,例举了子空间,正交性,线性变换,张量积等的应用;第三章特征值与矩阵的Jordan标准形,证明了Schur三角化定理与Cayley-Hamilton定理,给出了矩阵在相似变换下的最简形式即Jordan标准形,讨论了特征值估计的盖尔圆盘定理,介绍了特征值与特征向量在统计学和经济学中的一些应用。
Many authoregin their preface by confidently describing how their book arose.We started this project so long ago, and our memories are so weak, that we could not do this truthfully.Otheregin by stating why they decided to write.Thanks to Freud, we know that unconscious reasons can be as important as conscious ones, and so this seems impossible, too.Moreover, the real question that should be addressed is why the reader should struggle with this text.
《工程数学基础教程》内容包括泛函分析、矩阵分析和数值科学计算三部分内容。主要介绍线性空间与线性算子、矩阵的相似标准形、赋范空间、有界线性算子与方阵范数、矩阵分析、内积空间与代数方程组的解法、插值法与数值逼近、数值积分与数值微分以及常微分方程的数值解法。同时,各章后面都配有大量的习题供学生选做或复习。