《矩阵计算(英文版?第4版)》是数值计算领域的名著,系统介绍了矩阵计算的基本理论和方法。内容包括:矩阵乘法、矩阵分析、线性方程组、正交化和小二乘法、特征值问题、Lanczos方法、矩阵函数及专题讨论等。书中的许多算法都有现成的软件包实现,每节后附有习题,并有注释和大量参考文献。新版增加约四分之一内容,反映了近年来矩阵计算领域的飞速发展。 《矩阵计算(英文版?第4版)》可作为高等院校数学系高年级本科生和研究生教材,亦可作为计算数学和工程技术人员参考书。
内容简介本书为《高等代数》(丘维声著,科学出版社2013年3月出版)配套的习题解答与提示,汇集了该书的全部习题,计算题给出了答案,证明题给出了关键性的提示,并且对于相当一部分习题给出了详解,这些解法都很有特色,是高等代数课程的组成部分.
本书强调抽象的向量空间和线性映射, 内容涉及多项式、本征值、本征向量、内积空间、迹与行列式等. 本书在内容编排和处理方法上与通行的做法大不相同, 它完全抛开行列式, 采用更直接、更简捷的方法阐述了向量空间和线性算子的基本理论. 书中对一些术语、结论、数学家、证明思想和启示等做了注释, 不仅增加了趣味性, 还加强了读者对一些概念和思想方法的理解.
本书是按照国家*对经济、管理类大学本科线性代数考试大纲编写的,并充分考虑独立学院学生的特点,力求以通俗的语言向读者介绍线性代数基础的知识。 全书共分5章。第1章内容以行列式为中心,介绍了行列式的概念、性质及计算,以及用克菜姆法则求解线性方程组的方法;第2章介绍了矩阵这一重要的工具,讨论了矩阵的运算及初等变换;第3章以矩阵和向量为工具,进一步讨论了线性方程组的解法和解的结构;第4章通过对矩阵的特征值和特征向量的讨论,研究了矩阵的对角化问题;第5章讨论实二次型标准化及正定性问题。
线性代数 是高等院校理工科和经济管理类专业学科的一门重要基础数学课程。丁勇、陈君主编的《线性代数(第2版普通高等教育十三五规划教材)》依照国家*制定的高校 线性代数教学基本要求 编写,体现了当前独立院校培养高素质应用型人才数学课程设置的发展趋势与教学理念。全书共分五章,内容包括:行列式,矩阵,向量组的线性相关性,线性方程组,特征值,特征向量及矩阵的对角化。每章除了配有一定数量的课后习题及参考答案外,还在每章*后一节介绍了利用Matlab软件解决相应线性代数问题的内容,供读者参考学习。 本书可以作为独立院校理工科和经济管理类专业线性代数课程教材或教学参考书,同时也可作为数学实验和数学建模课程的参考书籍,对从事相关领域工作的工程技术人员或自学人员有一定的参考作用。
斐波那契数列,产生于12世纪意大利数学家斐波那契叙述的“生小兔问题”。从一个十分简明的递推关系出发,竟引出了一个充满奇趣的数列.它与植物生长等自然现象,以及几何图形、黄金分割、杨辉三角、矩阵运算等数学知识有着非常微妙的联系,并且在优选法、计算机科学等领域中得到广泛应用。吴振奎编著的《斐波那契数列欣赏》系统地介绍了斐波那契数列的性质和应用,将知识性与趣味性融为一体,阐述了几代数学家的思维方法,内容丰富,妙趣横生。《斐波那契数列欣赏》适用于大学、中学师生。
本书总结了各种广义的二乘问题的理论与计算的成果。主要包括二乘问题、总体二乘问题、等式约束二乘问题以及刚性加权二乘问题等的理论与科学计算问题。 由于各种广义奇异值分解在解决矩阵论和数值代数问题中有着重要的作用,书中也较详细地介绍了广义的奇异值分解,并应用于解决若干矩阵论和数值代数问题。本书需要的预备知识为数值代数和矩阵论。 本书可作为研究生和高年级本科生的教材,也可作为计算数学及应用学科中需要科学计算的科技工作者的参考书。
本书是大学本科一学期周3学时的“抽象代数”课的教材,主要内容是群、环、域的基础知识。本书的特点是简明实用,注重讲清抽象代数的思想和精神。本书还配备了适当数量的习题,并分基本题与补充题两个层次设置,便干学生自学和教师选题。 本书可作为综合性大学、一般院校或师范院校的“抽象代数”课教材,特别适合周3学时的教学使用。
斐波那契数列的理论是初等数学中困难而有趣的问题,它与“高深数学”的历史、问题和方法有紧密的联系。从有名的兔子问题开始几乎经历了八百年久远的岁月。迄今为止。斐波那契数列仍然是初等数学中最吸引人的一章。和斐波那契数列有关的问题在许多数学普及读物中都会出现,在学校的数学小组中常作为教材,在数学奥林匹克中也常被提及。 这本书包含的问题是列宁格勒国立大学1949—1950学年学生数学小组的某些学习材料。根据小组参加者的愿望,偏重于研究数论方面的内容;在本书中对于这些问题作了比较详尽的阐述。 在书中论及整除理论和连分数理论,阅读这些内容,不需要超出中学课程范围的预备知识。 本书适用于大学、中学师生。
西格尔所著的《数》系统地介绍了数理论,内容分四章:章介绍了数论的一些古典结果;第二章专门讲述适合于齐次线性微分方程组的某些函数数值的代数无关性;第三章中证明了数ab的性,即著名的Hilbert第七问题;最后,第四章介绍了Schneider关于椭圆函数的算术性质方面的一些研究结果。 《数》适合于大学、中学师生及数学爱好者。
“中国文化知识读本”丛书是由吉林文史出版社和吉林出版集团有限责任公司组织知名专家学者编写的一套旨在传播中华五千年传统文化,提高全民文化修养的大型知识读本。 王泽妍编著的《古代数学与算学》为丛书之一,生动介绍了古代数学发展、古代算术名家、古代算书、古代记数制度和计算工具等内容。 《古代数学与算学》中优美生动的文字、简明通俗的语言、图文并茂的形式,把中国文化中的物态文化、制度文化、行为文化、精神文化等知识要点全面展示给读者。
《线性代数/中南大学开放式精品示范课堂建设计划教材·线上线下立体化教材》主要内容包括矩阵及其运算、行列式及其计算、矩阵的逆、Gramer法则、矩阵运算的实际案例分析、矩阵运算的Matlab实验,矩阵的初等变换与初等矩阵、向量的线性相关性、向量空间、向量的线性相关性的实际案例分析、向量的线性相关性的Matlab实验,线性方程组的相容性、齐次线性方程组、非齐次线性方程组、线性方程组实际案例分析、求解线性方程纽的Matlab实验、方阵的特征值与特征向量、矩阵的相似对角化、实对称矩阵的正交相似对角化、二次型及其标准型、正定矩阵与正定二次型、相似对角化与二次型标准化的实际应用案例分析、相似对角化的Matlab实验,线性空间的基本理论等。《线性代数/中南大学开放式精品示范课堂建设计划教材·线上线下立体化教材》理论叙述详细,例题丰
斐波那契数列的理论是初等数学中困难而有趣的问题,它与“高深数学”的历史、问题和方法有紧密的联系。从有名的兔子问题开始几乎经历了八百年久远的岁月。迄今为止。斐波那契数列仍然是初等数学中最吸引人的一章。和斐波那契数列有关的问题在许多数学普及读物中都会出现,在学校的数学小组中常作为教材,在数学奥林匹克中也常被提及。 这本书包含的问题是列宁格勒国立大学1949—1950学年学生数学小组的某些学习材料。根据小组参加者的愿望,偏重于研究数论方面的内容;在本书中对于这些问题作了比较详尽的阐述。 在书中论及整除理论和连分数理论,阅读这些内容,不需要超出中学课程范围的预备知识。 本书适用于大学、中学师生。
本书是一部经典的线性代数教科书.其内容根据作者在奠斯科大学和基辅大学的授课材料整理修订而成,曾被用作苏联高等院校的教材。全书内容包括:行列式、线性空间、线性方程组、以向量为自变量的线性函数、坐标变换、双线性型与二次型、欧几里得空间、正交化与体积的测度、不变子空间与特征向量、欧氏空间里的二次型、二次曲面和无穷维欧氏空间的几何学。 本书的特点是:一、配有大量的例题和习题;二、把线,性代数和解析几何巧妙融合在一起.在文中自然运用几何的术语和概念对代数的对象进行解释和描述;三、从有限维空间(线性代数)巧妙地过渡到无穷维空间(泛函分析),为读者学习泛函分析打下基础。