%26nbsp;%26nbsp;本书是“十二五”普通高等教育本科重量规划教材。内容包括实数集与函数、数列极限、函数极限、函数的连续性、导数和微分、微分中值定理及其应用、实数的完备性、不定积分、
本书是为工学硕士研究生数值分析课而编写的学位课教材。内容包括:线性方程组的解法,矩阵特征值与特征向量的计算,非线性方程与非线性方程组的迭代解法,插值与逼近,数值积分,常微分方程初值问题的数值解法和偏微分方程的差分解法。内容丰富,系统性强,语言简练、流畅,数值例子和习题非常丰富,并附习题答案。其深度和广度适合工学硕士生的培养要求。 本书还可供从事科学与工程计算的科技人员自学和参考。
《发展方程边界元法及其应用》以抛物型方程、双曲型方程、Maxwell方程等初边值问题为例,介绍了求解发展型偏微分方程的边界元方法(经典边界方法、自然边界元法)及有限元与边界元耦合法,总结了作者近些年来在此研究领域的研究成果,其中包括初边值问题的边界积分归化与自然边界归化方法、离散化求解边界积分方程的数值方法、边界元近似解的收敛性和误差分析方法,以及边界元法的一些应用。
本书从实用和简明的角度介绍了数值分析的基本概念和方法,并对误差估计、方法的收敛性和稳定性以及优缺点等作了适当分析.全书共分8章,内容包括:绪论,插值法,曲线拟合与函数逼近,线性方程组的数值解法,数值积分与数值微分,非线性方程与方程组的数值解法,常微分方程初值问题的数值解法,矩阵特征值问题的数值方法.附录中给出了MATLAB简介.书中配有典型例题、习题和实验题,书后给出了部分习题答案.本书可作为理工科各专业研究生和高年级本科生的教材或教学参考书,也可供从事科学与工程计算的科技工作者参考.
短短八讲,不仅让你了解数学分析的概貌,更让你领会数学分析的精髓。这本由苏联数学家和数学教育家辛钦潜心编著的经典教材,思路清晰,引人入胜,全面梳理了数学分析的主要内容,涉及连续统、极限、函数、级数、导数、积分、函数的级数展开以及微分方程等主题。 本书原是作者在国立莫斯科大学为工程师授课的教案。书中选材独到,叙述深入浅出,即使是只学过最简单的数学分析课程的人也能容易地阅读和理解。而以此为基础,你可以更好地学习数学分析相关主题更为深入的内容。无论你是工程师、经济学者、数学教师,还是学习数学分析课程的大学生(包括非数学专业的大学生),阅读本书都能获益匪浅。 本书根据苏联国立技术理论书籍出版社1948年第三版译出,本次修订改正了一些错误,新增加了一些注解。
颜庆津编著的《数值分析(第4版)》是为工学硕士研究生数值分析课而编写的学位课教材。内容包括:线性方程组的解法,矩阵特征值与特征向量的计算,非线性方程与非线性方程组的迭代解法,插值与逼近,数值积分,常微分方程初值问题的数值解法和偏微分方程的差分解法以及数值分析计算实习题。本书内容丰富,系统性强,语言简练、流畅,数值例子和习题非常丰富,并附各章习题答案和计算实习题答案。本书的深广度符合工学硕士研究生的培养要求。《数值分析(第4版)》还可供从事科学与工程计算的科技人员自学和参考。
《MATLAB数值分析(第2版)》以MATLABR2011a为平台编写,介绍了数值分析与应用。全书共11章,~3章讲解了MATLAB基础知识,第4~10章分别讲解了矩阵分析、求解线性方程(组)、求解非线性方程(组)、插值拟合与变换、MATLAB的微积分、求解微分方程和MATLAB的化技术。1章总结性地介绍了数值分析在各个领域中的应用,让读者进一步领略到MATLAB的强大功能。 本书可作为理工科各专业的本科生、研究生以及其他专业科技人员学习MATLAB数值分析、建模、仿真方面的教材或参考书。
本书是华东师范大学数学系编写的《数学分析》(第四版)的配套参考用书。数学分析是数学系最重要的一门基础课,大学本科乃至研究生阶段的许多后续课程本质上都可以看作是数学分析的延伸、深化或应用。数学分析的基本概念、思想和方法更是渗透到整个数学体系中。数学专业的后续专业课程如微分方程、概率论、泛函分析、微分几何等都要以数学分析为基础,正因为如此,几乎所有的数学类专业研究生入学考试都将数学分析作为专业考试课之一。但数学分析的逻辑性、技巧性都很强,学习者往往是听懂了课堂内容,但对课后习题感到无从下手。针对上述困难,我们编写了本套辅导用书,以帮助学生尽快掌握数学分析的思想方法。全书作如下编排: 一、知识要点及思想方法。本部分依据小节编排,简要概括了各节要点,并对重点、难点以及基本概念、定理理解
数学分析是大学数学系的一门重要的必修课,是学习其它数学课的基础。同时,也是工科高等数学的主要组成部分。 吉米多维奇著的《数学分析习题集》是一本国际知名的著作,它在中国有很大影响,早在上世纪五十年代,国内就出版了该书的中译本。现安徽人民出版社翻译出版了新版的吉米多维奇《数学分析习题集》。新版的习题集在原版的基础上增加了部分新题,该习题集有五千道习题,数量多,内容丰富,包括了数学分析的全部主题。部分习题难度较大,初学者不易解答,应安徽人民出版社的同志邀请我们为新版的习题集作解答。本书可以作为学习数学分析过程中的参考用书。 众所周知,学习数学,作练习题是一个很重要的环节。通过作练习题,可以巩固我们所学到的知识,加我们对基础概念的理解,还可以提高我们的运算能力,逻辑推理能力,综合
《AP微积分》对AP Calculus BC考试所要求的知识做了全面的讲解,另配有大量的例题和习题。此外,作者还对2008年的AP Calculus BC所有真题做了详尽的解析,能帮助考生零距离地接触和了解AP微积分考试。书后附有所有AP Calculus BC的相关词汇及释义,便于考生查阅和记忆。另外此书以TI 83为例,对一些考试中所要用到的图形计算器的重要功能和使用方法也进行了演示和说明。
应用多元回归分析方法,样本相关,多元数据点图,特征值和特征向量,复合分析原理,因子分析,判别分析,逻辑斯谛回归方法,聚类分析,均值向量和方差-协方差矩阵,方差多元分析,预测模型和多元回归。本书统计内容覆盖面广于国内的概率统计教材,内容安排颇有新意,例如,在处理回归分析时,强调了从建模的观点与需要来考虑。本书设有大量的例题与练习题,实用面丰富,统计思维清晰。本书适用于高等院校统计学专业和理工科各专业本科生和研究生作为双语教材使用。
《MATLAB数值分析(第2版)》以MATLABR2011a为平台编写,介绍了数值分析与应用。全书共11章,~3章讲解了MATLAB基础知识,第4~10章分别讲解了矩阵分析、求解线性方程(组)、求解非线性方程(组)、插值拟合与变换、MATLAB的微积分、求解微分方程和MATLAB的化技术。1章总结性地介绍了数值分析在各个领域中的应用,让读者进一步领略到MATLAB的强大功能。 本书可作为理工科各专业的本科生、研究生以及其他专业科技人员学习MATLAB数值分析、建模、仿真方面的教材或参考书。
《MATLAB数值分析(第2版)》以MATLABR2011a为平台编写,介绍了数值分析与应用。全书共11章,~3章讲解了MATLAB基础知识,第4~10章分别讲解了矩阵分析、求解线性方程(组)、求解非线性方程(组)、插值拟合与变换、MATLAB的微积分、求解微分方程和MATLAB的化技术。1章总结性地介绍了数值分析在各个领域中的应用,让读者进一步领略到MATLAB的强大功能。 本书可作为理工科各专业的本科生、研究生以及其他专业科技人员学习MATLAB数值分析、建模、仿真方面的教材或参考书。
偏微分方程是数学学科的一个重要分支,它与其他数学分支均有广泛的联系,而且在自然科学与工程技术中有广泛的应用.本书主要讲述偏微分方程的一般理论,广义函数与sob01ev空间,椭圆边值问题,能量方法,算子半群等内容,为提高读者的整体数学素质提供了必要的材料,也为部分读者进一步学习与研究偏微分方程理论做了准备。 本书可作为高等院校数学系(数学、应用数学、计算机数学等专业)与有关理工科的研究生教材,也可作为数学、工程等领域的青年教师或科研人员的参考书。
《数学分析中的问题、方法与实践》由陈汝栋主编,分问题篇、方法篇和实践篇3部分。问题篇包含了数学分析中概念理解、方法使用中的254个问题的错误解析,有些问题还是比较深刻的;方法篇包含了数学分析中的常用方法和技巧,分证明方法和计算方法分别予以提炼和总结,并配以精选的例子;实践篇包含数学分析中的部分理论、方法在实际问题中的应用和近年来部分研究生招生的数学分析试题,特别是针对近年来各种教材习题解答的泛滥,按照高等教育出版社出版的复旦大学《数学分析》第三版的顺序,重新选择并改编了习题,以克服同学们抄习题解答的不良习惯。我们也期望任何人不要为本习题集出版解答书籍,以便为同学们学好数学分析提供一个良好的环境。《数学分析中的问题、方法与实践》可作为高等学校理科数学系学生学习数学分析的参考书和教师
《AP微积分》对AP Calculus BC考试所要求的知识做了全面的讲解,另配有大量的例题和习题。此外,作者还对2008年的AP Calculus BC所有真题做了详尽的解析,能帮助考生零距离地接触和了解AP微积分考试。书后附有所有AP Calculus BC的相关词汇及释义,便于考生查阅和记忆。另外此书以TI 83为例,对一些考试中所要用到的图形计算器的重要功能和使用方法也进行了演示和说明。
全书内容编写系统、新颖、清晰、独到,充分体现了如下三大特色: 一、知识梳理清晰、简洁:直观、形象的脉络结构图,精炼、准确的考点提炼,、独到的方法归纳,将教材内容抽丝剥茧、层层展开,呈现给读者简明扼要、层次分明的知识结构,便于读者快速复习、高效掌握,形成稳固、扎实的知识网,为提高解题能力和思维水平夯实基础。 二、能力提升迅速、互动:所有重点、难点、考点,统统归纳为一个个在考试中可能出现的基本题型,然后针对每一个基本题型,举出丰富的精选例题、考研例题,举一反三、深入讲解,真正将知识掌握和解题能力提升高效结合、浑然一体,一举完成。 三、联系考研密切、实用:本书既是一本教材同步辅导,也是一本考研复习用书,书中处处联系考研:例题中有考研试题,同步自测中也有考研试题,更不用说讲解中
吉米多维奇的《数学分析习题集》概括了《数学分析》的全部命题,但该书习题数量大,同时难题较多,对于大多数学习者来说难度较大。为帮助广大学习者更好地掌握《数学分析》的基本概念,提高综合运用各种解题技巧和方法分析问题和解决问题的能力,本书从吉米多维奇的《数学分析习题集》中选择了一部分习题进行汇编。这些习题内容较为全面、题型广泛、基础性题目较多、代表性最强,以在帮助广大学习者从多个角度理解相应的基本概念和基本理论的基础上,掌握基本解题方法,并事石展思路,举~反三,触类旁通,以较好地掌握《数学分析》的基本内容和解题思路,为参加各类考试和进一步深造奠定坚实基础。