本书系统介绍数学建模的理论及应用,作者将数学建模的过程归结为五个步骤(即“五步方法”),并贯穿全书各类问题的分析和讨论中。本书阐述了如何使用数学模型来解决实际问题,提出了在组建数学模型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范,而且配备了大量的习题。
《数学建模方法与分析(原书第4版)》系统介绍数学建模的理论及应用,作者米尔斯切特将数学建模的过程归结为五个步骤(即“五步方法”),井贯穿全书各类问题的分析和讨论中。书中阐述了如何使用数学模型来解决宴际问题,提出了在建立数学横型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范。而且配备了大量的习题。 本书适合作为高等院校相关课程的教材和参考书,也可供参加国内数学建横竞赛的人员参考。
吉米多维奇的《数学分析习题集》是一部著名的、很有代表性的习题集。编者根据我国目前的教学实际情况,选编了其中约三分之一的重要习题,并作了详细解答,分上、下两册出版。本书覆盖了该习题集各章节的主要内容,便于读者由厚到薄、由少而精地掌握该习题集内容,这对学习理科数学分析或工科高等数学(即微积分)的读者将大有裨益。 本书有很强的可读性,并兼顾多方需要,适合理、工科等的本、专科各专业教、学数学分析或高等数学(微积分)的师生作为教学参考书。
本书是为面向21世纪课程教材、普通高等教育“九五”*重点教材《工科数学分析基础》(王绵森、马知恩主编)而编写的,可以作为普通高等学校高等数学和微积分课程的教学辅导书,是在校大学生和任课教师的参考书。本书分为上、下两册,上册内容包括映射、极限、连续,一元函数微分学及其应用,一元函数的积分学及其应用,无穷级数。本书对《工科数学分析基础》的知识要点作了提纲挈领式的归纳,对习题作了全面的解答(题前标有符号“·”),并补充了部分典型例题,这些对读者提高数学素养和知识内涵、提高数学思维和运算能力是十分有益的。本书是使每个读者都能感受到开卷有益的一本好书。
本书是学习数学分析课程的一本极好的指导书。本书的编写顺序与一般的数学教科书同步,本册内容包括级数、函数项级数与幂级数、傅里叶级数、多元函数微分学、隐函数定理及应用、向量函数微分学、重积分、曲线积分与曲面积分。读者可以通过学习它循序渐进地理解和掌握数学分析的概念和方法。本书在归纳内容、释疑解难的基础上,用大量、全面的例题为读者诠释概念、演绎技巧、举证方法,使读者可以更好地融会知识、理解概念、熟悉技巧和掌握方法。因此,读者有必要认真学习本书,通过它化教科书上的抽象概念为自己的切实有用的知识。 希望本书能成为你的良师益友,欢迎你选用本系列丛书。
本书涵盖了高等微积分学的丰富内容,*精彩的部分集中在基础拓扑结构、函数项序列与级数、多变量函数以及微分形式的积分等章节。
本书不仅详细叙述了拓扑线性空间,包括若干子类局部凸空间、赋范空间、内积空间的公理系统、结构属性及其之上的强弱拓扑、共轭性,还深入论述了该学科离不开的几个专题,即形式上 为一般的三大基本定理与泛函延拓定理, Banach代数特别是Gelfand变换的基本理论,紧算子及其谱理论,自伴算子的谱理论,无界正常算子的谱理论以及Bonsall的闭值域定理,不变子空间的Lomonosov定理等;而且给出了以上基本理论的丰富多彩的应用,包括完整的关于广义函数、Fourier变换及其偏微分方程基本解的论述,对于Tauber型定理的应用,von Neumann的平均遍历定理,算子半群的Hille-Yosida定理并应用于发展方程等。
本书是学习数学分析课程的一本极好的辅导书,本书的内容与一般的数学分析教材同步,分为上、下两册。本册内容包括级数、函数项级数与幂级数、傅里叶级数、多元函数微分学、隐函数定理及其应用、向量函数微分学、重积分及曲线积分与曲面积分。本书用大量篇幅详尽地分析和解答了在学习数学分析课程中可能出现的概念和方法上的种种疑难问题,用众多典型的、多样的例题为读者诠释概念、演绎技巧、举证方法,力图使读者通过学习本书能领会数学分析思想的精髓,掌握数学分析的方法,熟悉解决问题的途径与技巧。它将使你体会“开卷有益”这句名言。 相信本书将成为你的良师益友。欢迎你选用本系列丛书。
本书是分析领域内的一部经典著作。主要内容包括:抽象积分、正博雷尔测度、LP-空间、希尔伯特空间的初等理论、巴拿赫空间技巧的例子、复测度、微分、积空间上的积分、傅里叶变换、全纯函数的初等性质、调和函数、*大模原理、有理函数逼近、共形映射、全纯函数的零点、解析延拓、HP-空间、巴拿赫代数的初等理论、全纯傅里叶变换、用多项式一致逼近等。另外,书中还附有大量设计巧妙的习题。本书体例优美,实用性很强,列举的实例简明精彩,基本上对所有给出的命题都进行了论证,适合作为高等院校数学专业高年级本科生和研究生的教材。
本书研究如何将线性科学中适用的强有力的基本方法发展推广到非线性科学。书中全面系统论述作者及其课题组近几年建立的新研究方法,如多线性分离变量法、泛函分离变量法和导数相关泛函分离变量法、形变映射法、方程推导的非平均法等。本书还系统介绍了在非线性数学物理严格解研究方面的一些其他重要方法及其*发展,如有限和无限区域的反散射方法、形式分离变量法、奇性分析法、对称性约化方法、达布变换方法和广田直接法等等。书中利用这些方法,对非线性系统中的各种局域激发模式及其相互作用作了详尽的描述。 本书可作为高等院校物理系和数学系等理工科高年级本科生选修课教材和研究生专业基础课教材,也可供物理、数学、力学、计算机、大气和海洋科学等非线性科学领域的研究人员参考。
本书是大学数学的内容、方法与技巧丛书之一,对常微分方程的主要内容、基本方法与常用技巧进行了全面的讨论与分析,用大量的例题对所讨论的内容与方法作了演示与论证。全书的内容包括初等积分法、基本定理、线性微分方程、线性微分方程组、定性与稳定性概念及一阶偏微分方程。本书用简明易懂、通俗流畅的语言深人浅出地诠释概念、解析疑难、演绎方法与投巧,帮助读者理解与熟悉常微分方程的基本概念与理论,培养读者运用常微分方程方法分析问题与解决问题的能力,本书与教材同步,在方法与技巧上略有拓宽与提高,是大学生、工程技术人员与经济分析人员的、读之有益的一本好书。
本书是一部实分析方面的经典教材,主要分三部分,第壹部分为经典的实变函数论和经典的巴拿赫空间理论;第二部分为抽象空间理论,主要介绍分析中有用的拓扑空间以及近代巴拿赫空间理论;第三部分为一般的测度和积分论,即在第二部分理论基础上将经典的测度、积分论推广到一般情形。.
本书主要介绍非线性自适应逆控制的原理和构成非线性自适应逆控制的各个环节:用各种可辨识非线性系统模型构成的非线性自适应滤波器;非线性自适应正建模和逆建模;非线性自适应逆系统的性能控制和扰动控制结构及基本工作原理。后,给出非线性自适应逆控制系统的综合控制结构及工作原理,并将其应用于混饨控制与同步中去。 本书是一本非线性系统自适应逆控制的专著,它综合了当前非线性建模和逆建模中的先进方法,并将其应用到非线性自适应逆控制之中。书中语言通俗易懂,可作为高等院校有关专业的硕士生和博士生选修课教材或参考书;也可作为愿意学习这方面知识的读者的入门书;还可供工作在非线性控制领域的工程技术人员参考。
《北京高等教育精品教材:数学分析讲义(第2册)》可作为高等院校数学系攻读数学、应用数学、计算数学的本科生数学分析课程的教材或教学参考书,也可作为需要把数学当做重要工具的同学(例如攻读物理的同学)的教学参考书。《北京高等教育精品教材:数学分析讲义(第2册)》在2012年第2次重印时,对书中的练习题按小节进行了调整,并在书末增加了习题的提示,以减轻读者在做题时的难度。
本书共分七章:绪论,初等积分法,线性方程组与方程,常系数线性微分方程与方程组,一般理论,稳定性初步,一阶偏微分方程。为了巩固所学知识,每章均配有一定量的习题,书后附有部分习题答案与提示。 本书可作为高等院校数学系本科学生的教材,也可供工科学生及工程技术人员参考。
《生存数据统计分析》主要系统介绍生存分布函数估计、概率密度估计、失效率估计、包含平均寿命作为特例的一类均值泛函估计及其统计性质,介绍与之相关的统计方法(如鞅重抽样方法、估计方程方法、点过程鞅方法、经验似然方法等)及有关的应用成果;介绍两样本检验及处理差异统计推断方法,介绍随机删失回归分析及比例风险回归统计推断方法、理论及应用。