激波(或称冲击波)的产生与传播是一个普遍的物理现象。例如在连续介质中的爆破通常会产生一个激波由爆破源往外传播,在超过音速的高速飞行物体前方通常也总会有一个激波随之一起运动。在空气动力学的研究中激波的运动(包括其生成、传播、反射等)占着极其重要的地位,对激波运动的理论研究涉及许多困难的数学问题。本书以偏微分方程为主要工具对激波反射所涉及的数学问题做深入的分析。为方便读者,本书结合以后展开讨论的需要先介绍流体力学方程组以及激波的一些基本事项,然后对定常与非定常的激波反射,正则反射与马赫反射都逐一进行分析,并对其中一些重点的问题给出详细的数学证明。同时,本书也提出一些未解决的问题并指出其中会遇到的困难,期待后续研究能有新的推进。本书适合有关专业的研究生与科研人员、工程技术人员阅读
数学主要讲述思想方法的学科,深入理解数学比掌握一大堆的定理、定义、问题和技术显得更为重要。本书介绍实分析结合详尽、广泛的阐述,便于读者深入理解分析内涵和基本方法。
《矩阵迭代分析(第二版)》的作者现任英国肯特大学教授,多种国际权威杂志主编或编委。《矩阵迭代分析(第2版)》**版1962年由Prentice Hall出版,是矩阵迭代分析方面的**教材。此次修订,有些章节吸收了新的研究成果,如弱正则分裂方面的结果;有些章节则增添了新的内容,引述了*近的定理,更新了参考文献,读者从中可以了解一些*新的发展方向。此次修订,新的章节的内容基本上都是自含的,并添加了习题。原版主要基于线性代数方法,而修订版强调借助其他领域的工具,如逼近论和共型映射理论,得到更加新颖的结果。《矩阵迭代分析(第2版)》尤其适合从事数值分析的科研人员和研究生阅读。
本书共三册,按三个学期设置教学,介绍了数学分析的基本内容。《BR》 册内容主要包括数列的极限、函数的极限、函数连续性、函数的导数与微分、函数的微分中值定理、Taylor公式和L’Hospital法则。第二册内容主要包括不定积分、定积分、广义积分、数项级数、函数项级数、幂级数和Fourier级数。第三册内容主要包括多元函数的极限和连续、多元函数的微分学、含参量积分、多元函数的积分学。《BR》 本书在内容上,涵盖了本课程的所有教学内容,个别地方有所加强;在编排体系上,在定理和证明、例题和求解之间增加了结构分析环节,展现了思路形成和方法设计的过程,突出了教学中理性分析的特征;在题目设计上,增加了例题和课后习题的难度,增加了结构分析的题型,突出分析和解决问题的培养和训练。
《泛函分析索伯列夫空间和偏微分方程(英文版)》提出了一个连贯的、确切的、统一的方法将两个来自不同领域的元素——泛函分析和偏微分方程,结合在一起,旨在为具有良好实分析背景的学生提供帮助。通过详细地分析一维PDEs的简单案例,即ODEs,一个对初学者来说比较简单的方法,该书展示了从泛函分析到偏微分方程的平滑过渡。