吉米多维奇的《数学分析习题集》概括了《数学分析》的命题,但该书习题数量大,同时难题较多,对于大多数学习者来说难度较大。为帮助广大学习者更好地掌握《数学分析》的基本概念,提高综合运用各种解题技巧和方法分析问题和解决问题的能力,本书从吉米多维奇的《数学分析习题集》中选择了一部分习题进行汇编。这些习题内容较为全面、题型广泛、基础性题目较多、代表性最强,以在帮助广大学习者从多个角度理解相应的基本概念和基本理论的基础上,掌握基本解题方法,并事石展思路,举~反三,触类旁通,以较好地掌握《数学分析》的基本内容和解题思路,为参加各类考试和进一步深造奠定坚实基础。
比较系统地对无穷级数在数学中所起的技术工具作用与连分数解析理论构造闵可夫斯基(Minkowski)函数及将其开拓到复数域上作了介绍。特别较为无穷发散级数的几种和性结合实际地作了论述和论证。当然这是《无穷级数与连分数》在数学思想方面的体现。 《无穷级数与连分数》章主要介绍无穷收敛级数在经典与近代数学中的技术工具作用,第二章主要介绍无穷发散级数作为某些函数的渐进级数作相应的数值计算与求微分方程的数值解。同时不同程度地阐明了对无穷发散级数的几种可和性方法。第三章论述连分数与无穷级数的关系及连分数的解析理论。第四章应用其连分数的解析理论,特别是Denjoy引理构造了闵可夫斯基函数,而这个函数具有明显的特征,顺便将其解析开拓到复平面的某个区域内,给出最普遍的表示形式。
本书系统地介绍了数据如何始于业务、取于业务、用于业务。既有扎实的理论铺设,又有具体的案例支撑,通俗易懂地回答了数据“怎么来”和“怎么用”的问题。同时,本书总结出了解决业务分析难题的六大步骤,包括对 终数据分析产生关键影响的数据源的选取方法,以及通过对业务模块的判断确定分析方法的适用场景, 终推演、验证、分析出结论,并选择 的分析结果展现方式,让数据分析全过程形成闭环。 本书的内容从底层原理出发,帮助读者打好数据分析基本功。在原理的讲解过程中,通过提问、思考、解答、案例分享的方式,结合三位专家十多年的行业经验,让读者从根本上理解数据分析、学会数据分析。本书适合数据分析从业也、数据分析爱好者阅读,也适合大中专院校数据相关专业的老师和学生使用。
he present book iased on lectures given by the author at the University of Tokyo during the past ten years. It is intended as a textbook to be studied by students on their own or to be used in a course on Functional Analysis, i.e., the general theory of linear operators infunction spaces together with salient features of its application to diverse fields of modem and classical analysis. Necessary prerequisites for the reading of thiook are summarized,with or without proof, in Chapter 0 under titles: Set Theory, Topological Spaces, Measure Spaces and Linear Spaces. Then, starting with the chapter on Semi-norms, a general theory of Banach and Hilbert spaces is presented in connection with the theory of generalized functions of S. L. SOBOLEV and L. SCHWARTZ. While the book is primarily addressed to graduate students, it is hoped it might prove useful to research mathematicians, both pure and applied. The reader may pass, e.g., fromChapter IX (Analytical Theory. of Semi-groups) directly to Chapter XIII (Ergodic T
he present book iased on lectures given by the author at the University of Tokyo during the past ten years. It is intended as a textbook to be studied by students on their own or to be used in a course on Functional Analysis, i.e., the general theory of linear operators infunction spaces together with salient features of its application to diverse fields of modem and classical analysis. Necessary prerequisites for the reading of thiook are summarized,with or without proof, in Chapter 0 under titles: Set Theory, Topological Spaces, Measure Spaces and Linear Spaces. Then, starting with the chapter on Semi-norms, a general theory of Banach and Hilbert spaces is presented in connection with the theory of generalized functions of S. L. SOBOLEV and L. SCHWARTZ. While the book is primarily addressed to graduate students, it is hoped it might prove useful to research mathematicians, both pure and applied. The reader may pass, e.g., fromChapter IX (Analytical Theory. of Semi-groups) directly to Chapter XIII (Ergodic T
这是一套完整介绍数学分析的教材,内容涉及从实数到流形上的微分形式,其中包括渐近方法、傅立叶分析、拉普拉斯变换、勒让德变换、椭圆函数以及频率分布。本书语言通俗,表达清晰,各章有大量的练习、思考题以及应用实例。
美国萨奥尔编著的《数值分析》是一本的数值分析教材,书中不仅全面论述了数值分析的基本方法,还深入浅出地介绍了计算机和工程领域使用的一些数值方法,如压缩、前向和后向误差分析、求解方程组的迭代方法等。每章的“实例检验”部分结合数值分析在各领域的具体应用实例,进一步探究如何更好地应用数值分析方法解决实际问题。此外,书中含有一些算法的matlab实现代码,并且每章都配有大量难度适宜的习题和计算机问题,便于读者学习、巩固和提高。
本书是俄罗斯莫斯科大学数学力学系现行的数学分析课程的教材。反映了作者较新的数学教学思想与方法。通过本书可了解近年来俄罗斯大学数学系的数学分析课的教学与改革的·隋况。全书共分四个部分21章。部分(-6章)为单变量函数的微分学,第二部分(第7-14章)为黎曼积分、多变量函数的微分学,第三部分(5-18章)为函数级数与参变积分,第四部分(9-21章)为多重黎曼积分、曲面积分。书末附有用于讨论班和考试的示范性问题和习题。 本书可供数学类专业的本科生、研究生、教师和研究人员参考使用。
本书是有关带裂纹的、动态的正交各向异性复合材料强度分析的专著。全书共分七章。章:在等价空间中,用Hankel积分求解正交各向异性板剪切型裂纹问题;第二章:正交各向异性板剪切型动态断裂问题;第三章:正交各向异性板动态剪切型应力强度因子的数值解;第四章:用BEM的虚拟位移法求解正交各向异性板混合型加载斜裂纹问题;第五章:正交各向异性板边裂纹问题的应力场、位移场及应力强度因子;第六章:纤维缠绕壳体的测地线方法及其结构设计理论的新思路;第七章:纤维增强复合材料动态特性及热变形。 本书可供宇航、船舶、建筑、复合材料等领域的科技工作者、高等院校教师及研究生参阅。
he present book iased on lectures given by the author at the University of Tokyo during the past ten years. It is intended as a textbook to be studied by students on their own or to be used in a course on Functional Analysis, i.e., the general theory of linear operators infunction spaces together with salient features of its application to diverse fields of modem and classical analysis. Necessary prerequisites for the reading of thiook are summarized,with or without proof, in Chapter 0 under titles: Set Theory, Topological Spaces, Measure Spaces and Linear Spaces. Then, starting with the chapter on Semi-norms, a general theory of Banach and Hilbert spaces is presented in connection with the theory of generalized functions of S. L. SOBOLEV and L. SCHWARTZ. While the book is primarily addressed to graduate students, it is hoped it might prove useful to research mathematicians, both pure and applied. The reader may pass, e.g., fromChapter IX (Analytical Theory. of Semi-groups) directly to Chapter XIII (Ergodic T
空间与映射的分类设想是点集拓扑学的主要研究方向之一。本书利用映射方法系统论述广义度量空间的基本理论,总结了20世纪的年代以来空间与映射理论的重要研究成果,特别包含了学者的研究工作,内容包括广义度量空间的产生、度量空间的映象和广义度量空间类等3章和2个附录。第二版在版的基础上,对部分内容作了修饰,补充了广义度量空间理论的若干新进展,适当调整了附录和参考文献,列举了一些尚未解决的问题供有兴趣的读者研究。 本书可以作为广义度量空间理论学习或研究的参考书,可供大学数学系高年级学生、研究生及研究工作者使用。
偏微分方程是数学学科的一个重要分支,它与其他数学分支均有广泛的联系,而且在自然科学与工程技术中有广泛的应用.本书主要讲述偏微分方程的一般理论,广义函数与sob01ev空间,椭圆边值问题,能量方法,算子半群等内容,为提高读者的整体数学素质提供了必要的材料,也为部分读者进一步学习与研究偏微分方程理论做了准备。 本书可作为高等院校数学系(数学、应用数学、计算机数学等专业)与有关理工科的研究生教材,也可作为数学、工程等领域的青年教师或科研人员的参考书。
郑慧娆、陈绍林、莫忠息、黄象鼎编著的《数值计算方法(第2版)》是为高等学校信息与计算科学专业编写的教材。内容包含求解线性方程组的数值方法、求解非线性方程的二乘方法、矩阵特征值问题的数值方法、插值、逼近、数值积分、常微分方程的数值解法。作为教材,书中叙述较为详细,便于学生自学复习。其中一部分为可选择的内容,以满足不同学生的需要。对于数学、应用数学、计算机科学等专业相应的课程,同样可以选择《数值计算方法(第2版)》部分内容作为教材。
偏微分方程是数学学科的一个重要分支,它与其他数学分支均有广泛的联系,而且在自然科学与工程技术中有广泛的应用.本书主要讲述偏微分方程的一般理论,广义函数与sob01ev空间,椭圆边值问题,能量方法,算子半群等内容,为提高读者的整体数学素质提供了必要的材料,也为部分读者进一步学习与研究偏微分方程理论做了准备。 本书可作为高等院校数学系(数学、应用数学、计算机数学等专业)与有关理工科的研究生教材,也可作为数学、工程等领域的青年教师或科研人员的参考书。
本书介绍了现代数值近似技术的理论及实用知识,解释了它们的工作原理。同它的前几个版本一样,该书仍将重点放在近似技术的数值分析上,以便为读者今后的学习打下坚实的数值分析与科学计算基础。本书内容丰富、翔实,可以根据不同的学习对象和学习目的,选择、组织、串联相应的章节,形成侧重于理论或是侧重于实用的两种学习策略。书中的每个概念均以大量的例子说明,同时书中还包含2000多个习题,范围从方法、算法的基本应用到理论的归纳与扩展,涉及物理、计算机、生物、社会科学等多个不同的领域。通过这些实例,进一步说明在现实世界中,数值方法是如何被应用的。第七版新增了两个突出的部分,一是前承条件共轭梯度方法,为线性方程系统提供了更完备的解决方法;另一部分是同伦与连续方法,为非线性方程系统的近似求解提供了不同的方