本书系统介绍数学建模的理论及应用,作者将数学建模的过程归结为五个步骤(即“五步方法”),并贯穿全书各类问题的分析和讨论中。本书阐述了如何使用数学模型来解决实际问题,提出了在组建数学模型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范,而且配备了大量的习题。
美国萨奥尔编著的《数值分析》是一本的数值分析教材,书中不仅全面论述了数值分析的基本方法,还深入浅出地介绍了计算机和工程领域使用的一些高级数值方法,如压缩、前向和后向误差分析、求解方程组的迭代方法等。每章的“实例检验”部分结合数值分析在各领域的具体应用实例,进一步探究如何更好地应用数值分析方法解决实际问题。此外,书中含有一些算法的matlab实现代码,并且每章都配有大量难度适宜的习题和计算机问题,便于读者学习、巩固和提高。
《数学分析的思想与方法》通过多角度、深层次、全方位地探讨了数学分析学科的思想方法,全书共分为六部分:部分对数学分析内容体系中所体现的重要思想进行了探讨与分析;第二部分对数学分析内容体系中所体现的重要思想进行了探讨与分析;第三部分对数学分析内容体系中所蕴含的哲学思想进行了挖掘与分析;第三部分通过大量的事例对数学分析内容中所常用的数学思想进行了举例与分析;第四部分对数学美与数学分析中的美学思想进行了论述与分析;第五部分对微积分创立过程中数学家的思想和方法进行了整理与分析;最后一部分以附录的形式将古代数学家解决问题的方法进行了举例与说明。
《傅里叶分析导论》由在国际上享有盛誉普林斯大林顿大学教授Stein撰写而成,是一部傅立叶分析的入门教材,理论与实践并重,为了便于非数专业的学生学习,全书内容简明、易懂.全书分为三部分,部分介绍傅立叶级数的基本理论及其在等周不等式和等分布中的应用;第二部分研究傅立叶变换及其在经典偏微分方程及Radom变换中的应用;第三部分研究有限阿贝尔群上的傅立叶分析。书中各章均有练习题及思考题。目次:傅立叶积分的起源;傅立叶级数和基本性质;傅立叶级数的收敛性;傅立叶积分的应用;IR上的傅立叶变换;IRd上的傅立叶变换;有限傅里叶分析;Dirichlet定理。
《二阶椭圆型偏微分方程(第二版修订版)》主要阐述二阶拟线性椭圆型偏微分方程的一般理论以及为此而必需的线性理论,着重于有界区域上的DirichIet问题。书中的内容源于作者在斯坦福大学为研究生课程所写的讲义,但大大超出了这些课程的范围,并包括了位势理论、泛函分析等预备性章节;第二版修订版增加了Nikolai Krylov的导数Holder估计的相关内容,这—估计提供了椭圆型(和抛物型)高维完全非线性方程的古典理论进一步发展的基本要素。《二阶椭圆型偏微分方程(第二版修订版)》是一本自封闭的严谨的教学参考书,适合相关专业的研究生和高年级本科生阅读,也可供其他科技工作人员参考。
本书系统地总结了《数学分析》的基本知识、基本理论、基本方法和解题技巧,收集了大量的具有代表性的题目(其中大部分题目是来自于近几年一些高校的研究生入学试题),由浅入深地介绍了《数学分析》的解题思路和解题方法,在解题过程中启发读者进而打开思路并掌握技巧,使学生能够更好地融汇知识、理解概念和掌握方法,以提高学生分析问题和解决问题的能力。 本书包括:极限与连续、一元函数微分学、一元函数积分学、级数等8章内容。
这本由孙雨雷和冯君淑主编的《数值分析 第五版 同步辅导及习题全解(新版)》是为了配合清华大学出版社出版的、李庆扬、王能超、易大义主编的《数值分析》(第五版)教材而编写的配套辅导书。 本书共九章,分别介绍数值分析与科学计算引论、插值法、函数逼近与快速傅里叶变换、数值积分与数值微分、解线性方程组的直接方法、解线性方程组的迭代法、非线性方程与方程组的数值解法、矩阵特征值计算、常微分方程初值问题数值解法。全书按教材内容,对各章的重点、难点做了较深刻的分析。针对各章节全部习题给出详细解题过程,并附以知识点窍和逻辑推理,思路清晰、逻辑性强,循序渐进地帮助读者分析并解决问题,各章还附有典型例题与解题技巧,以及历年考研真题评析。 《数值分析 第五版 同步辅导及习题全解(新版)》可作为工科各专业、本科
数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,富盛名习题,莫过于前苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当长的一段时间之内,这套书只有题目,并无标准解法,直到20世纪八十年代初由我国著名数学家费定晖,周学圣等人将其全部解出,并且反复演算,终集结成册,由山东科学技术出版社出版,这就是在数学界大名鼎鼎的《1.Б.П.吉米多维奇数学分析习题集》。从《吉米多维奇数学分析习题集》到《吉米多维奇数学分析习题集题解》虽然两字之差,但是包含了一代数学大师们无数的心血。 直至1977年吉米多维奇去世,全套题集共计4462道,由浅入深的涵盖了数学分析题目的全部变化形式,部分习题难度很大,因此无论是自学、提高还是考研,这本书
本书是以作者多年来为天津大学非数学类专业博士生讲授非线性数学课程的讲义为基础编写而成,内容包括:空间结构与映射、非线性泛函分析和现代变分法的基础、非线性动力系统基础知识、分岔与奇异性理论以及混沌和分形的基础知识。 本书注重相关概念和理论之间的联系,保持了较严谨的数学体系,将学习非线性理论基础知识与提高现代数学修养这两个目的有机结合,可供高等院校非数学类专业博士生或对数学要求较高的硕士生选用部分或全部内容作为教材或教学参考书,也可供有关教师或科技工作者参考。
《数学分析解题精讲》是编者(徐新亚)30余年数学分析教学和考研辅导的经验总结,全书共选入600 多个例题和200多个课后习题,它们基本上都是近年来国内各高校数学专业招收硕士研究生时的入学试题,涵盖了数学分析考研大纲要求的所有内容,精简实用、针对性强,完全能够满足绝大多数数学专业学生的考研需要。 如何解题是《数学分析解题精讲》的主旨,但又决不是为解题而解题.对书中所列的全部例题,注重分析题意,寻找突破点,对许多典型题型进行解题思路分析,力图发现常见的规律,以求积累解题技巧,实现解题能力的升华。 《数学分析解题精讲》既可以作为数学专业学生进行考研辅导时的教科书,也适合学生自学。
数值分析的若干问题与方法介绍数值分析的若干问题与新方法,是作者对近年来数值计算方法研究工作的系统整理和总结。其主要内容包括:高精度数值积分公式的构造及加速;数值积分公式的对偶公式;Cotes校正公式及其误差估计;数值积分的Monte Carlo方法;改进数值积分公式的两种新策略;高精度数值积分公式的重构及渐近性;数值积分公式误差的X优估计;一类含中介值定积分等式证明题的构造;数值微分公式的构造及其应用;Newton迭代公式的改进等。本书可供计算数学工作者、从事科学与工程计算的科研人员,以及相关专业的研究生和本科高年级学生参考。
《数学分析选讲》分为上、下两册。本书为下册,是为报考硕士研究生的学生并兼顾正在学习“数学分析”课程的学生编写的复习指导书。目的是帮助他们从概念和方法两方面深化、开拓所学数学分析的内容。本书按数学分析课的内容分为四章:极限理论、连续函数、一元函数微分学和一元函数积分学。每章由基本概念分析和解题方法分析两部分组成。前一部分,针对学生学习时易出现的错误,设计编写了各种形式的问题,以引导读者对基本概念、基本理论进行多侧面、多层次、由此及彼、由表及里的思索和辨析;后一部分则着重分析解题思路,探索解题规律,归纳、总结解题方法。《数学分析选讲》对读者掌握分析问题和处理问题的方法与技巧有较好的指导作用。所选例题、习题内容广泛,且具有与硕士研究生入学考试相当的水平。本书对从事数学分析和高
《数学分析选讲》分为上、下两册.本书为上册,是为报考硕士研究生的学生并兼顾正在学习“数学分析”课程的学生编写的复习指导书.目的是帮助他们从概念和方法两方面深化、开拓所学数学分析的内容。 本书按数学分析课的内容分为四章:极限理论、连续函数、一元函数微分学和一元函数积分学.每章由基本概念分析和解题方法分析两部分组成.前一部分,针对学生学习时易出现的错误,设计编写了各种形式的问题,以引导读者对基本概念、基本理论进行多侧面、多层次、由此及彼、由表及里的思索和辨析;后一部分则着重分析解题思路,探索解题规律,归纳、总结解题方法。 本书对读者掌握分析问题和处理问题的方法与技巧有较好的指导作用.所选例题、习题内容广泛,且具有与硕士研究生入学考试相当的水平.本书对从事数学分析和高等
心算,看似神奇,实则有规律可循。 中国人的数学能力,在世界上首屈一指,绝非偶然。有很多充分掌握心算奥秘的密码。 指算六十甲子是心算万年历的一种方法,更是一个密码;多位数多样式乘法,也有快速完成的窍门。 阅读此书,加以练习,你也能成为 心算达人 !
本书全面、系统地介绍了矩阵论的基本理论、运算方法及其应用。全书分八章,前四章突出基础理论,重点介绍线性空间与线性变换,欧氏空间与酉空间,Jordan标准形,向量与矩阵的范数理论。后四章侧重应用,学习矩阵的分析运算,特征值的估计,广义逆矩阵在解线性方程组中的应用,矩阵直积在解矩阵方程及矩阵微分方程中的应用。每章配有相应的习题,书末给出答案与提示。附录中给出哈工大研究生矩阵分析2007 2012年考试试题及参考答案。本书力求行文流畅,例题详实,推论严谨,深入浅出,旨在提高工科研究生的数学修养和自学能力。
本书涵盖了高等微积分学的丰富内容,*精彩的部分集中在基础拓扑结构、函数项序列与级数、多变量函数以及微分形式的积分等章节。
今年是恩师郭柏灵院士70寿辰,华南理工大学出版社决定出版《郭柏灵论文集》。郭老师的弟子,也就是我的师兄弟,推举我为文集作序。这使我深感荣幸。我于l985年考入北京应用物理与计算数学研究所,师从郭柏灵院士和周毓麟院士。研究生毕业后我留在研究所工作,继续跟随郭老师学习和研究偏微分方程理论。老师严谨的治学作风和对后学的精心培养与殷切期望,给我留下了深刻的印象,同时老师在科研上的刻苦精神也一直深深地印在我的脑海中。