复分析是数学最核心的学科之一,不但自身引人入胜、丰富多彩,而且在多种其他数学学科(纯数学和应用数学)中都非常有用。《单复变函数论(第三版)(英文版)》的与众不同之处在于它从多变量实微积分中直接发展出复变量。每一个新概念引进时,它总对应了实分析和微积分中相应的概念,《单复变函数论(第三版)(英文版)》配有丰富的例题和习题来印证此点。 作者有条不紊地将分析从拓扑中分离出来,从柯西定理的证明中可见一斑。《单复变函数论(第三版)(英文版)》分几章讨论专题,如对特殊函数的完整处理、素数定理和Bergman核。作者还处理了Hp空间,以及共形映射边界光滑性的Painleve定理。
Thesubjectofthisbookisgeometricintegratorsfordifferentialequationswithhighlyoscillatorysolutions,includingoscillation-preservingintegrators,continuous-stageERKNintegrators,nonlinearstabilityandconvergenceanalysisofERKNintegrators,functionally-fittedenergy-preservingintegrators,exponentialcollocationmethods,volume-preservingexponentialintegrators,globalerrorboundsofone-stageERKNintegratorsforsemilinearwaveequations,linearly-fittedconservative/dissipativeintegrators,energy-preservingschemesforKlein?CGordonequations,Hermite?CBirkhofftimeintegratorsforKlein?CGordonequations,symplecticapproximationsforKlein?CGordonequations,continuous-stagemodifiedleap-frogschemeforhigh-dimensionalHamiltonianwaveequations,semi-analyticalexponentialRKNintegrators,long-timemomentumandactionsbehaviourofenergy-preservingmethods.Thenewgeometricintegratorsareappliedtoproblemswithhighlyoscillatorysolutionsfromsciencesandengineering.
传统的分布式应用不会切入微服务、快速数据及传感器网络的响应式世界。为了捕获这些应用的动态联系及依赖,我们需要使用另外一种方式来进行领域建模。由纯函数构成的领域模型是以一种更加自然的方式来反映一个响应式系统内的处理流程,同时它也直接映射到了相应的技术和模式,比如Akka、CQRS以及事件溯源。本书讲述了响应式系统中建立领域模型所需要的通用且可重用的技巧——首先介绍了函数式编程和响应式架构的相关概念,然后逐步地在领域建模中引入这些新的方法,同时本书提供了大量的案例,当在项目中应用这些概念时,可作为参考。
《多复变函数论》包含多复变函数研究中分析、层论与复几何这三个最主要方面的主要研究成果与方法。较之外相应的多复变函数著作,本书的内容更全面,而且通过阅读本书,读者可以充分了解多复变函数与几何、拓扑、方程和实分析等相关分支的交叉关系。 《多复变函数论》的撰写尽可能地适于自学之用,主要读者对象为数学系高年级本科生、研究生与青年教师,同时也可供其他理工科专业本科生、研究生、青年教师及相关工程技术人员学习参考之用。
本书由在国际上享有盛誉普林斯大林顿大学教授Stein等撰写而成,是一部为数学及相关专业大学二年级和三年级学生编写的教材,理论与实践并重。为了便于非数学专业的学生学习,全书内容简明、易懂,读者只需掌握微积分和线性代数知识。关于本书的详细介绍,请见“前言”。 本书已被哈佛大学和加利福尼亚理工学院选为教材。与本书相配套的教材《傅立叶分析导论》和《复分析》也已影印出版。