本书涵盖非线性规划的主要内容,包括无约束优化、凸优化、拉格朗日乘子理论和算法、对偶理论及方法等,包含了大量的实际应用案例. 本书从无约束优化问题入手,通过直观分析和严格证明给出了无约束优化问题的*性条件,并讨论了梯度法、牛顿法、共轭方向法等基本实用算法. 进而本书将无约束优化问题的*性条件和算法推广到具有凸集约束的优化问题中,进一步讨论了处理约束问题的可行方向法、条件梯度法、梯度投影法、双度量投影法、近似算法、流形次优化方法、坐标块下降法等. 拉格朗日乘子理论和算法是非线性规划的核心内容之一,也是本书的重点.
本书内容简介:This book is an outgrowth of a course which I gave atOrsay duringthe academic year 1 966.67 MY purpose in those lectureswas to pre-sent some of the required background and at the sametime clarify theessential unity that ests between several relatedareas of analysis.These areas are:the estence and boundedness ofsingular integral op-erators;the boundary behavior of harmonicfunctions;and differentia-bility properties of functions of severalvariables.AS such the moncore of these topics may be said torepresent one of the central develop-ments in n.dimensional Fourieranalysis during the last twenty years,and it can be expected tohave equal influence in the future.These pos.
《多复变函数论》包含多复变函数研究中分析、层论与复几何这三个最主要方面的主要研究成果与方法。较之外相应的多复变函数著作,本书的内容更全面,而且通过阅读本书,读者可以充分了解多复变函数与几何、拓扑、方程和实分析等相关分支的交叉关系。 《多复变函数论》的撰写尽可能地适于自学之用,主要读者对象为数学系高年级本科生、研究生与青年教师,同时也可供其他理工科专业本科生、研究生、青年教师及相关工程技术人员学习参考之用。
本书是H.嘉当根据他于二十世纪五十年代后期到六十年代初期在巴黎大学理学院所授复变解析函数课程编写的。包含了单复变函数一些经典的理论,也介绍了多复变函数的解析性和全性,是一本非常经典的解析函数论入门教程。该书先讲收敛幂级数,后讲可导函数及积分,地引进了解析空间和黎曼面等概念,讲述了多复变解析函数的概念,在使用工具方面,引进了拓扑及抽象代数中的一些概念。书中还包括很多练习。 原书已被翻译成中、日、英、俄等多国文字,至今仍为法国务大学复变函数课程主要参考书。 本书可供我国数学专业及相关专业的研究生、教师参考。
老大中编著的《变分法基础(第3版)》是变分法方面的专著,书中系统地介绍变分法的基本理论及其应用。 编写本书的目的是希望为高等院校的研究生和高年级大学生提供一本学习变分法课程的教材或教学参考书,使他们能够熟悉变分法的基本概念和计算方法。本书内容包括预备知识、固定边界的变分问题、可动边界的变分问题、泛函极值的充分条件、条件极值的变分问题、参数形式的变分问题、变分原理、变分问题的直接方法、力学中的变分原理及其应用以及含向量、张量和哈密顿算子的泛函变分问题。其中许多内容是作者多年来的研究成果,特别是提出完全泛函的极值函数定理,统一了变分法中的各种欧拉方程,创立含向量、向量的模、任意阶张量和哈密顿算子的泛函的变分理论,给出相应的欧拉方程组及自然边界条件,扩大了变分法的应用范围。本书也可供
本书是变分法方面的专著,书中系统地介绍变分法的基本理论及其应用。 编写本书的目的是希望为高等院校的研究生和高年级大学生提供一本学习变分法课程的教材或教学参考书,使他们能够熟悉变分法的基本概念和计算方法。内容包括预备知识、固定边界的变分问题、可动边界的变分问题、泛函极值的充分条件、条件极值的变分问题、参数形式的变分问题、变分原理、变分问题的直接方法和力学中的变分原理及其应用。其中一部分内容是作者多年来的研究成果,特别是提出了完全泛函的极值函数定理,统一了变分法中的各种欧拉方程。本书也可供有关专业的教师和科技人员参考。 本书概念清楚,逻辑清晰,内容丰富,深入浅出,便于自学,既注重方法的介绍,又不失数学的系统性、科学性和严谨性。书中列有大量例题和习题,并附有中英文索引。为了帮助
本书共分6章,主要涉及分数阶偏微分方程的理论分析以及数值计算。章着重介绍分数阶导数的由来以及一些分数阶偏微分方程的物理背景;第2章介绍Riemann-Liouville等分数阶导数以及分数阶Sobolev空间、交换子估计等常用的工具;第3章从理论的角度讨论一些重要的偏微分方程;从第4章开始重点讨论分数阶偏微分方程的数值计算,介绍了有限差分法、级数逼近法(主要是Adomian分解和变分迭代法)、有限元法以及谱方法、无网格法等计算方法。本书涵盖了该领域的一些前沿结果以及作者目前的一些研究结果。 本书可供大学数学专业、应用数学专业和计算数学专业的高年级学生、研究生、教师以及相关的科技工作者阅读、参考。
《多项式和多项式不等式(英文版)》是springer数学研究生教材(gtm)61卷,主要介绍多项式和有理函数,重点论述代数多项式和三角多项式的特性,同时也介绍了多项式几何、正交多项式、切比雪夫和马可夫系、müntz系和müntz-type型稠密性定理,以及不等式用于多项式和有理函数等理论。其中有些内容较同类图书更加全面。目次:导论和基本特性;特殊多项式;切比雪夫和笛卡儿系;稠密性问题;基本不等式;müntz空间中的不等式;有理函数空间中的不等式。 读者对象:数学及相关专业研究生和科研人员。
本书是复分析领域近年来产生了广泛影响的一本著作。作者独辟蹊径,用丰富的图例展示各种概念、定理和证明思路,十分便于读者理解,充分揭示了复分析的数学美,书中讲述的内容有作为变换看的复函数、默比乌斯变换、微分学、非欧几何学、环绕数、复积分、柯西公式、向量场、调和函数等。 本书可作为大学本科生或研究生的复分析课程教材或参考书。