本书内容简介:This book is an outgrowth of a course which I gave atOrsay duringthe academic year 1 966.67 MY purpose in those lectureswas to pre-sent some of the required background and at the sametime clarify theessential unity that ests between several relatedareas of analysis.These areas are:the estence and boundedness ofsingular integral op-erators;the boundary behavior of harmonicfunctions;and differentia-bility properties of functions of severalvariables.AS such the moncore of these topics may be said torepresent one of the central develop-ments in n.dimensional Fourieranalysis during the last twenty years,and it can be expected tohave equal influence in the future.These pos.
本书是2007年7月23日至27日在美国普渡大学举办的 L函数 会议的论文集。这次会议是为了祝贺Freydoon Shahidi 的60岁生日而举办的,他被公认在Langlands纲领方面做出了开创性的贡献。 书中的文章从各个角度描绘了该领域的研究现状。这些文章展示了自守形式及其L函数在几何、分析和数论等方面的新成果,涉及局部与整体理论。 本书主题包括Langlands函子性,Rankin-Selberg方法,Langlands-Shahidi方法,主题 Galois群,Shimura簇,轨道积分,p进群的表示,Plancherel公式及其推论,Gross-Prasad 猜想,等等。 书中还收录了一篇介绍 Freydoon Shahidi在本领域所做贡献的综述性文章,此文可作为该领域的导引。 本书对于专家们是有用的参考资料,而刚入门的研究人员可以利用本书来查阅Langlands纲领的主要结果。
《Haskell函数式编程基础:原书第3版》是一本非常的Haskell函数式程序设计的入门书,依次介绍函数式程序设计的基本概念、编译器和解释器、函数的各种定义方式、简单程序的构造、多态和高阶函数、数组和列表的结构化数据、列表上的原始递归和推理、输入输出I/O的控制处理、类型检测方法、代数数据类型、抽象数据类型、惰性计算等内容。《Haskell函数式编程基础:原书第3版》包含大量的实例和习题,注重程序测试、程序证明和问题求解,易读易学。《Haskell函数式编程基础:原书第3版》循序渐进,从基本的函数式程序设计直至专题,让读者对Haskell的学习不断深入。
Sincethepublicationofmylecturenotes,FunctionalDifferentialEquationsintheAppliedMathematicalSciencesseries,manynewdevelopmentshaveoccurred.Asaconsequence,itwasdecidednottomakeafewcorrectionsandadditionsforasecondeditionofthosenotes,buttopresentamoreprehensivetheory.Thepresentworkattemptstoconsolidatethoseelementsofthetheorywhichhavestabilizedandalsotoincluderecentdirectionsofresearch.
本书是具有鲜明特点的专著兼,其创新之处是把赋范空间、赋准范空间和赋拟范空间结合起来深入讨论(特别是创造出了许多有趣的反例说明它们的差异点),这样的做法不仅是理论上、并且也是实际问题的需要。本书共有两部分,部分的主要内容可以作为泛函分析的入门,我们在前两章介绍和讨论了赋范、赋准范和赋拟范空间及其上的线性算子的基本概念,第三章介绍和讨论了所谓“线性泛函的三大原理”,即Hahn—Banach定理、开映像与闭图像定理以及共鸣定理(一致有界原理),最后介绍了Hilbert空间的基本内容。本书的第二部分以及部分全部(特别是一些*号部分和录)则可作为高校的相关研究生,在第二部分中,除了介绍的可分空间(改范)等价于C[a,b]以及严格凸空间外,还介绍和讨论了(作为上述空间推广的)拓扑向量空间的基本而有用的一些概念和特性。
本书是变分法方面的专著,书中系统地介绍变分法的基本理论及其应用。 编写本书的目的是希望为高等院校的研究生和高年级大学生提供一本学习变分法课程的教材或教学参考书,使他们能够熟悉变分法的基本概念和计算方法。内容包括预备知识、固定边界的变分问题、可动边界的变分问题、泛函极值的充分条件、条件极值的变分问题、参数形式的变分问题、变分原理、变分问题的直接方法和力学中的变分原理及其应用。其中一部分内容是作者多年来的研究成果,特别是提出了完全泛函的极值函数定理,统一了变分法中的各种欧拉方程。本书也可供有关专业的教师和科技人员参考。 本书概念清楚,逻辑清晰,内容丰富,深入浅出,便于自学,既注重方法的介绍,又不失数学的系统性、科学性和严谨性。书中列有大量例题和习题,并附有中英文索引。为了帮
《椭圆函数与模函数:从一道美国加州大学洛杉矶分校(UCLA)博士资格考题谈起》详细介绍了椭圆函数以及模函数的相关知识。全书共分为三章,分别为:椭圆函数、模函数、椭圆函数与算术学。 《椭圆函数与模函数:从一道美国加州大学洛杉矶分校(UCLA)博士资格考题谈起》可供从事这一数学分支或相关学科的数学工作者、大学生以及数学爱好者研读。
The book is suitable for a one-year course at the advanced undergraduate level. By omitting certain chapters, a one semester course can be based on it. For instance, if the students already have a good knowledge of partial differentiation and the elementary topology of E', then substantial parts of Chapters 4, 5, 7, and 8 can be covered in a semester. Some knowledge of linear algebra is presumed. However, results from linear algebra are reviewed as needed (in some cases without proof).