Thesubjectofthisbookisgeometricintegratorsfordifferentialequationswithhighlyoscillatorysolutions,includingoscillation-preservingintegrators,continuous-stageERKNintegrators,nonlinearstabilityandconvergenceanalysisofERKNintegrators,functionally-fittedenergy-preservingintegrators,exponentialcollocationmethods,volume-preservingexponentialintegrators,globalerrorboundsofone-stageERKNintegratorsforsemilinearwaveequations,linearly-fittedconservative/dissipativeintegrators,energy-preservingschemesforKlein?CGordonequations,Hermite?CBirkhofftimeintegratorsforKlein?CGordonequations,symplecticapproximationsforKlein?CGordonequations,continuous-stagemodifiedleap-frogschemeforhigh-dimensionalHamiltonianwaveequations,semi-analyticalexponentialRKNintegrators,long-timemomentumandactionsbehaviourofenergy-preservingmethods.Thenewgeometricintegratorsareappliedtoproblemswithhighlyoscillatorysolutionsfromsciencesandengineering.
实变函数论是数学的一个重要分支,它在近代数学的各分支中有着广泛而深刻的应用。《实变函数习题精选》详细解答了由徐森林、薛春华编写的《实变函数论》中的练习题和复习题,尤其是其中的难题。它可帮助解难题有困难的读者渡过难关,也可帮助青年教师更好、更有信心地教好这门课。对应于原书,该书共分4章。全书的主要特点是:1.一题多解,使读者打开思路,开阔视野。每题叙述清晰,论证严密;2.给出解题思路,突出关键;3.解答难题时,注意对分析能力与研究能力的培养,尤其是创造性能力的培养;4.注重一般测度论和一般积分理论的论述,有利于概率统计方向的学生对学习研究能力的培养;5.内容、例题的训练与难题解答连贯起来,以使读者融会贯通,获得较强的分析功夫,在学习和研究上呈现出一个飞跃。《实变函数习题精选》可作为综合性、
Elias M.Stein、RamiShakarchi所著的《复分析》由在国际上享有盛誉普林斯大林顿大学教授Stein等撰写而成,是一部为数学及相关专业大学二年级和三年级学生编写的教材,理论与实践并重。为了便于非数学专业的学生学习,全书内容简明、易懂,读者只需掌握微积分和线性代数知识。与本书相配套的教材《傅立叶分析导论》和《实分析》也已影印出版。本书已被哈佛大学和加利福尼亚理工学院选为教材。
本书共有15章,其基本内容分为3个部分:医学伦理学概述(章~第三章)、医学实践与伦理要求(第四章~第十一章)、医学实践中的伦理问题(第十二章~第十五章)。主要介绍医学伦理学的发展以及基本原则和规范,医学实践过程中必须遵循的伦理要求,医学实践中的有关伦理问题。本书是一本比较全面系统论述当代医学伦理学理论和实践的读物,既可以作为高等医学院校的教材,又可以作为一般读者了解和掌握医学伦理问题的参考书。
本书由在国际上享有盛誉普林斯大林顿大学教授Stein等撰写而成,是一部为数学及相关专业大学二年级和三年级学生编写的教材,理论与实践并重。为了便于非数学专业的学生学习,全书内容简明、易懂,读者只需掌握微积分和线性代数知识。关于本书的详细介绍,请见“前言”。 本书已被哈佛大学和加利福尼亚理工学院选为教材。与本书相配套的教材《傅立叶分析导论》和《复分析》也已影印出版。
30年来,动力系统的数学理论与应用有了很大发展。30多年前还没有高速的台式计算机和计算机图像,“混沌”一词也没有在数学界使用,而对于微分方程与动力系统的研究兴趣主要仅限于数学界中比较小的范围。到今天,处处有计算机,求微分方程近似解的软件包已得到广泛运用,使人们从图形中就能看到结果。对于非线性微分方程的分析已为广大学者所接受,一些复杂的动力学行为,如马蹄映射、同宿轨、Lorenz系统中揭示出来的复杂现象,以及数学方面的分析,使学者们确信简单的稳定运动,如平衡态和周期解己不总是微分方程解的最重要的行为,而混沌现象揭示出来的美妙性态正促使各个领域的科学家与工程师细心关注在他们自己领域中提出的重要的微分方程及其混沌特性。动力系统现象在今天已出现在几乎每个科学领域中,从化学中的振荡Belousov-Zhabotinsky反
本书共包括10章115节:章复数;第二章关于方程式根之基础定理;第三章用尺规作图法;第四章三次及四次方程式之解法,该方程式等之判别式;第五章一方程式之图形;第六章圈定实方程式之实根;第七章数目方程式之解法;第八章行列式,一次方程组;第九章对称函数;第十章消元法,消元所得式及判别式。书后配备了附录、答案及索引。 本书适合于高等院校师生及相关专业研究人员、数学奥林匹克竞赛选手和教练员以及数学爱好者。
老大中编著的《变分法基础(第3版)》是变分法方面的专著,书中系统地介绍变分法的基本理论及其应用。 编写本书的目的是希望为高等院校的研究生和高年级大学生提供一本学习变分法课程的教材或教学参考书,使他们能够熟悉变分法的基本概念和计算方法。本书内容包括预备知识、固定边界的变分问题、可动边界的变分问题、泛函极值的充分条件、条件极值的变分问题、参数形式的变分问题、变分原理、变分问题的直接方法、力学中的变分原理及其应用以及含向量、张量和哈密顿算子的泛函变分问题。其中许多内容是作者多年来的研究成果,特别是提出完全泛函的极值函数定理,统一了变分法中的各种欧拉方程,创立含向量、向量的模、任意阶张量和哈密顿算子的泛函的变分理论,给出相应的欧拉方程组及自然边界条件,扩大了变分法的应用范围。本书也可供
本书由在国际上享有盛誉普林斯大林顿大学教授Stein等撰写而成,是一部为数学及相关专业大学二年级和三年级学生编写的教材,理论与实践并重。为了便于非数学专业的学生学习,全书内容简明、易懂,读者只需掌握微积分和线性代数知识。关于本书的详细介绍,请见“前言”。 本书已被哈佛大学和加利福尼亚理工学院选为教材。与本书相配套的教材《傅立叶分析导论》和《复分析》也已影印出版。
30年来,动力系统的数学理论与应用有了很大发展。30多年前还没有高速的台式计算机和计算机图像,“混沌”一词也没有在数学界使用,而对于微分方程与动力系统的研究兴趣主要仅限于数学界中比较小的范围。到今天,处处有计算机,求微分方程近似解的软件包已得到广泛运用,使人们从图形中就能看到结果。对于非线性微分方程的分析已为广大学者所接受,一些复杂的动力学行为,如马蹄映射、同宿轨、Lorenz系统中揭示出来的复杂现象,以及数学方面的分析,使学者们确信简单的稳定运动,如平衡态和周期解己不总是微分方程解的最重要的行为,而混沌现象揭示出来的美妙性态正促使各个领域的科学家与工程师细心关注在他们自己领域中提出的重要的微分方程及其混沌特性。动力系统现象在今天已出现在几乎每个科学领域中,从化学中的振荡Belousov-Zhabotinsky反
本书是一部备受专家好评的教科书,书中用现代的方式清晰论述了实分析的概念与理论,定理证明简明易懂,可读性强,全书共有200道例题和1200例习题。本书的写法像一部文学读物,这在数学教科书很少见,因此阅读本书会是一种享受。
本书共有15章,其基本内容分为3个部分:医学伦理学概述(章~第三章)、医学实践与伦理要求(第四章~第十一章)、医学实践中的伦理问题(第十二章~第十五章)。主要介绍医学伦理学的发展以及基本原则和规范,医学实践过程中必须遵循的伦理要求,医学实践中的有关伦理问题。本书是一本比较全面系统论述当代医学伦理学理论和实践的读物,既可以作为高等医学院校的教材,又可以作为一般读者了解和掌握医学伦理问题的参考书。
The core chapters of this volume provide a plete course on metric, normed, and Hilbert spaces, and include many results and exercises seldom found in texts on analysis at this level. The author covers an unusually wide range of material in a clear and concise format including elementary real analysis, Lebesgue integration on R, and an introduction to functional analysis. This makes a versatile text also suited for courses on real analysis, metric spaces, abstract analysis, and modern analysis. The book begins with a prehensive chapter providing a fast-paced course on real analysis, and is followed by an introduction to the Lebesgue integral. This provides a reference for later chapters as well as an introduction for students with only the typical sequence of undergraduate calculus courses as prerequisites. Other features include a chapter introducing functional analysis, the Hahn-Banach theorem and duality, separation theorems, the Baire Category Theorem, the Open Mapping Theorem and their consequences, and u