本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
本书针对各类具有多尺度特性的问题给出简化数学处理方法(平均化和均匀化),该方法可用于求解偏微分方程、微分方程、常微分方程以及Markov链。 全书共分三部分,部分为背景资料;第二部分为扰动展开,给出此类问题的共性;第三部分阐述了一些证明扰动方法的理论。每章结束部分的讨论和文献目录中均对本章的一些结论进行了推广和扩展,并附上参考文献。除章外,所有章节均提供相应练习。 本书既可作为高等院校本科和研究生教材,也可作为教师、工程技术人员和业余爱好者的自学用书。
Banach空间中的常微分方程理论是近二三十年发展起来的一个新的数学分支,它把常微分方程理论和泛函分析理论结合起来,利用泛函分析方法研究Banach空间中的常微分方程。它的理论在无穷常微分方程组、临界点理论、偏微分方程、不动点定理等多方面都有广泛的应用。特别是,临界点理论中常用的最速下降流线,即以是Banach空间常微分程方程理论作基础。由于它的重要性,又比较新,故被列为我国自然科学基金重点资助的项目之一。 在我国,研究Banach空间常微分方程理论的人很少,1985年,在第五届全国非线性泛函分析会议上,作者和孙经先副教授合作了《Banach空间中的常微分方程理论》综合报告,引起了许多人的兴趣。本书显然可作为综合性大学和高等师范大学有关专业的研究生教材,也可供有关教师和科技大工作者进行科研时参考。
一张方格纸,上面画着纵横两组平行线,相邻平行线之间的距离都相等,这样两组平行线的交点,就是所谓格点,怎样用格点的个数去计算平面上 有限区域的面积,或者反过来,在平面上已知面积的一个有限区域内至少有多少格点,这就是本书所要讨论的问题,闵嗣鹤编著的《格点和面积》就是 这样围绕着格点和面积这个主题,讲述了数学上一些有用的问题,《格点和面积》适合初、高中师生及数学爱好者参考阅读。
这批教材普遍具有以下特点:(1)基本上是近3年出版的,在国际上被广泛使用,在同类教材中具有相当的性;(2)高版次,历经多年教学实践检验,内容翔实准确、反映时代要求;(3)各种教学资源配置整齐,为师生提供了极大的便利;(4)插图精美、丰富,图文并茂,与正文相辅相成;(5)语言简练、流畅、可读性强,比较适合非英语国家的学生阅读。 通过影印、翻译、编译这批教材,我们一方面要不断地分析、学习、消化吸收国外教材的长处,吸取国外出版公司的制作经验,提升我们自编教材的立体化配套标准,使我国高校教材建设水平上一个新台阶;与此同时,我们还将尝试组织海外作者和作者合编外文版基础课数学教材,并约请专家改编部分国外教材,以适应我国实际教学环境。
This revision of the 1983 second edition of"Elliptic Partial Differential Equations of Second Order" corresponds to the Russian edition, published in 1989, in which we essentially updated the previous version to 1984. The additional text relates to the boundary H61der derivative estimates of Nikolai Krylov, which provided a fundamental ponent of the further development of the classical theory of elliptic (and parabolic), fully nonlinear equations in higher dimensions. In our presentation we adapted a simplification of Krylov's approach due to Luis Caffarelli.
不管你是理工科系的学生,还是学商、国贸、经济,可能都有这样的微积分修课经验:无论多么专心听讲,教授讲的内容你仍然听不懂。本书作者试图告诉读者:“千万不要误以为听不懂全是自己的错!” 《微积分之屠龙宝刀》并非正式教科书,除了着重观念的解释之外,它还会告诉读者微积分该怎么教、好老师该怎么找、期末考试该怎么考,目的就是希望帮助读者更容易了解一般教科书里的精髓。
This revision of the 1983 second edition of"Elliptic Partial Differential Equations of Second Order" corresponds to the Russian edition, published in 1989, in which we essentially updated the previous version to 1984. The additional text relates to the boundary H61der derivative estimates of Nikolai Krylov, which provided a fundamental ponent of the further development of the classical theory of elliptic (and parabolic), fully nonlinear equations in higher dimensions. In our presentation we adapted a simplification of Krylov's approach due to Luis Caffarelli.
本书从理论和实践出发,全面介绍求解微分方程的数值方法——有限差分法,并简单地介绍有限元法.全书共6章,主要内容包括:预备知识、常微分方程的数值解法、抛物型偏微分方程的有限差分法、双曲型偏微分方程的有限差分法、椭圆型偏微分方程的有限差分法、有限元法简介等.本书提供配套电子课件、例题程序代码、课后习题参考运行结果及程序代码等。
《德国讲义日本考题:微积分卷》收录了大量德国和日本关于微积分方程方面的知识点和考题,每个知识点后配有大量的典型例题,书中的问题有趣,解题思路多样。《德国讲义日本考题:微积分卷》适合参考阅读,也适合数学很强的生及数学爱好者参考阅读。《德国讲义日本考题:微积分卷》作者是德国罗德,译者是刘培杰数学工作室。
为帮助读者系统地学习和掌握微积分的主要内容和基本方法,《微积分学习辅导/经济管理类数学基础》针对教材每章内容,均编配5部分内容,即基本要求、内容提要、例题选讲、习题解答及自测题。在教材例题的基础上,有针对性地精选了大量的典型例题和习题,帮助读者系统地掌握基本概念、基本解题方法与思路。《微积分学习辅导/经济管理类数学基础》不仅是教材的配套辅导书,也便于高等学校本科在校学生或函授学员独立选作参考辅导书,同时也可作为相关任课教师的辅助工具书。
数学分析是数学系的一门重要的必修课,是学习其它数学课的基础。同时,也是工科高等数学的主要组成部分。吉米多维奇著的《数学分析习题集》是一本国际知名的著作,它在中国有很大影响,早在上世纪五十年代,就出版了该书的中译本。现安徽人民出版社翻译出版了新版的吉米多维奇《数学分析习题集》。新版的习题集在原版的基础上增加了部分新题,该习题集有五千道习题,数量多,内容丰富,包括了数学分析的主题。部分习题难度较大,初学者不易解答,应安徽人民出版社的同志邀请我们为新版的习题集作解答。本书可以作为学习数学分析过程中的参考用书。