本书是论述不等式的理论与方法的一本专门若作,主要围绕着若干著名的经典不等式,从它们的证明方法,相互之间的联系以及它们的应用等几个方面加以系统地论述. 本书可供不等式研究工作者以及高等师范类院校数学教育专业的学生和数学爱好者参考阅读.
The first edition was intended to be a synthesis of reform and traditional approaches to calculus instruction。In this second edition I continue to follow that path by empha- sizing conceptual understanding through visual, numerical, and algebraic approaches。The principal way in which this book differs from my more traditional calculus textbooks is that it is more streamlined。 For instance, there is no plete chapter on techniques of integration;I don't prove as many theorems (see the discussion on rigor on page );and the material on transcendental functions and on parametric equations is interwoven throughout the book instead of being treated in separate chapters。Instruc- tors who prefer fuller coverage of traditional calculus topics should look at my books Calculus, Fourth Edition and Calculus: Early Transcendentals, Fourth Edition。 Changes in the Second Edition~ The data in examples and exercises have been updated to be more timely。~ Several new examples have been added。For instance,
本书是论述不等式的理论与方法的一本专门若作,主要围绕着若干著名的经典不等式,从它们的证明方法,相互之间的联系以及它们的应用等几个方面加以系统地论述. 本书可供不等式研究工作者以及高等师范类院校数学教育专业的学生和数学爱好者参考阅读.
本书是一本专门为理工科高等职业教育编写的大专数学教材。内容主要包括:微积分,级数与微分方程,常微分方程,线性代数,概率论与数理统计及数学建模。该书具有如下特点:采用模块式,使接口放宽,适用各不同层次的学生使用;注重实用性,帮助读者掌握方法,增加具有启发性的应用性题目;采用手册型,便于查阅,方便读者查用;便于自学,通俗易懂、可使读者获得较好的学习效果。 该书适用于大专院校的学生及自学高等数学的读者使用。
本书是一部为分析专业的研究生量身定做的入门书籍。本书是以欧几里得空间为背景,清晰明确的阐释了奇异积分及其相关话题。后三章有大量作者在调和分析方面做出的科研成果和继续研究所需要的背景材料。
本书主要是面向青少年和本科经济类学生的自学教程。也可以作为面向大众的科普读物。本书中的趣味阐述使得微积分简单易学,并且涉及重要极限、中值定理、微分方程等微积分中核心概念。贴近我国读者的现实生活和考试文化。
本书从理论和实践出发,全面介绍求解微分方程的数值方法——有限差分法,并简单地介绍有限元法.全书共6章,主要内容包括:预备知识、常微分方程的数值解法、抛物型偏微分方程的有限差分法、双曲型偏微分方程的有限差分法、椭圆型偏微分方程的有限差分法、有限元法简介等.本书提供配套电子课件、例题程序代码、课后习题参考运行结果及程序代码等。
《研究生教学用书:微分流形初步》是微分流形理论的入门教材,是联系经典数学和当代数学文献的桥梁,主要内容是介绍微分流形的基本概念和例子、微分流形上的光滑切向量场、光滑张量场、外微分式的运算和性质,以及黎曼流形、李群、微分纤维丛的初步知识。全书的叙述深入浅出,平易流畅,重点突出,强调几何背景,着重介绍在微分流形上如何通过局部坐标系来处理大范围定义的数学对象。通过《研究生教学用书:微分流形初步》的学习,会在微分流形的理论和应用方面打下坚实的基础,并且为学习当代数学文献创造条件。
本书介绍椭圆方程的基本性质和方法。作者用自己独特的方法把DeGiorgi-Nash-Moser迭代、Morrey估计、逆Holder不等式和椭圆组的能量的blowup分析系统有机地结合起来,并且特别强调正则性方法的研究。内容全面、自封证明简洁、篇幅适中在处理正则性理论方面非常具有特色