《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》是《微积分之屠龙宝刀》的续集,内容从极座标、无穷级数的收敛、空间向量,到参数曲线、多变数函数、偏导数、多重积分、向量场。想换一种方式,理解这些令人头疼的课题吗?欢迎你拿起《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》,跟随三位作者的脚步,一同披荆斩棘,度过危机,不管你是理工科系的学生,还是学商业、国际贸易、经济,可能都有这样的微积分修课经验:无论多么专心听讲教授讲的内容你仍然听不懂。《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》试图告诉读者:“千万不要误以为听不懂全是自己的错!”
本书是(英文版)一本关于曲线和曲面微分几何的导论,介绍微分几何这两个方面的局部特性与整体特性。同传统的微分几何教材不同,本书更广泛地应用初等线性代数的知识,并把重点放在基本的几何论据上。 为取得概念与实际材料之间的适度平衡,本书还包含大量的例子,并合理安排习题,其中包含经典微分几何的某些实际题材。
FollowingKeller[119]wecalltwoproblemsinversetoeachotheriftheformulationofeachofthemrequiresfullorpartialknowledgeoftheother.Bythisdefinition,itisobviouslyarbitrarywhichofthetwoproblemswecallthedirectandwhichwecalltheinverseproblem.Butusually,oneoftheproblemshasbeenstudiedearlierand,perhaps,inmoredetail.Thisoneisusuallycalledthedirectproblem,whereastheotheristheinverseproblem.However,thereisoftenanother,moreimportantdifferencebetweenthesetwoproblems.Hadamard(see[91])introducedtheconceptofawell-posedproblem,originatingfromthephilosophythatthemathematicalmodelofaphysicalproblemhastohavethepropertiesofuniqueness,existence,andstabilityofthesolution.Ifoneofthepropertiesfailstohold,hecalledtheproblemiU-posed.Itturnsoutthatmanyinterestingandimportantinverseproblemsinscienceleadtoill-posedproblems,,whilethecorrespondingdirectproblemsarewell-posed.Often,existenceanduniquenesscanbeforcedbyenlargingorreducingthesolutionspace(thespaceof"models").Forrestoringstability,however,onehastochangethetopologyofthespaces,whichisinm
本书包括6章正文和5个附录,主要介绍有物理背景的一些非线性偏微分方程孤立子解形成的机理,求解这类方程的反散射变换方法,Backlund变换方法,相似约化方法,若干种函数变换方法,以及与非线性偏微分方程可积性有关的一些知识,可以作为应用数学、应用物理以及非线性科学相关方向研究生的教材或教学参考书,也可作为高年级大学生及从事非线性科学研究的科研人员和教师的学习和参考用书。