本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
本书为微积分入门科普读物,书中以微积分的“思考方法”为核心,以生活例子通俗讲解了微积分的基本原理、公式推导以及实际应用意义,解答了微积分初学者遭遇的常见困惑。本书讲解循序渐进、生动亲切,没有烦琐计算、干涩理论,是一本只需“轻松阅读”便可以理解微积分原理的入门书。
微积分是人类历 的伟大思想成就之一,也是数学领域不可或缺的一个重要分支。除此之外,我们 应该关注的事实是:如果没有微积分,人类就不可能发明电视、微波炉、移动电话、GPS、激光视力矫正手术、孕妇超声检查,也不可能发现冥王星、破解人类基因组、治疗艾滋病,以及弄明白如何把5 000首歌曲装进口袋里。 在人类文明进程中的这些具有里程碑意义的发明和发现背后,微积分究竟扮演了什么样的角色?围绕曲线之谜、运动之谜和变化之谜,毕达哥拉斯、阿基米德、伽利略、开普勒、牛顿、莱布尼茨、爱因斯坦、薛定谔等如何用微积分的“钥匙”打开了宇宙奥秘之“锁”?这些谜题的解决方案对人类文明的进程和我们的日常生活又产生了什么样的深远影响?在《微积分的力量》书中,应用数学家兼“导游”斯托加茨将用一种“讲故事”和“看展览”的方
微积分变魔术:一团面积变一条高,俗话“油饼变油条”,行话“二维变一维”。秘密含在一张表之中:一张画像加两行证明,一行决定、二行证毕。
\"从数学的角度来看,世界是由微分和积分构成的。因此,学习微积分就是我们主动了解我们生活的世界的一种方式。微积分在数学中占据着重要的地位,是一个充满数学魅力和乐趣的领域。 然而,微积分的理论性 强,学习难度大,是 容易挫伤学生学习数学积极性的部分之一。为了 限度地发挥学生的主观能动性,在 短的时间内抓住并阐明本质,本书以师生对话的方式,配以简单的图片,用浅显易懂的文字说明了微积分的基本原理。 本书共包括四个部分,分别是:课前准备、60分钟揭开微积分神秘面纱的四大步骤、所谓“微分”是指什么?、所谓“积分”是指什么?。 本书通过日常生活中的常见事例说明了微积分的基本原理、公式推导过程及实际应用意义。本书讲解循序渐进,生动亲切,没有烦琐复杂的计算过程,是一本写给不擅长数学的成年人的学习
本书介绍了十多位优秀的数学家:牛顿、莱布尼茨、伯努利兄弟、欧拉、柯西、黎曼、刘维尔、魏尔斯特拉斯、康托尔、沃尔泰拉、贝尔、勒贝格。然而,这不是一本数学家的传记,而是一座展示微积分宏伟画卷的陈列室。作者选择介绍了历史上的若干杰作(重要定理),优雅地呈现了微积分从创建到完善的漫长、曲折的过程。本书兼具趣味性和学术性,对基础知识的要求很低,可作为本科生、研究生和数学工作者的微积分补充读物,更是数学爱好者的佳肴。
本书通过一系列重要的数学地标,系统地梳理了微积分理论,既包含课堂上没讲授的数学通识内容,又包含对一些复杂知识点的细致拆解,还包含微积分在现实生活中的应用,帮助读者开阔数学视野、提高数学思维、加深对数学的理解。全书共分为四篇: 篇“数学通识,一些你应该了解的观点和事实”为读者构建数学学习的理念和方法;第二篇“从有限到无穷,初等数学与高等数学的分水岭”解释高等数学何以称为高等?大学数学内容与中学数学内容相比是否存在一个明确的分水岭?为微积分的引入做好铺垫;第三篇“从局部到整体,微积分的华彩乐章”是全书核心,借助“局部—整体原则”讨论函数极限、连续性、无穷小及其比较、导数与微分、微积分基本定理、多元函数微积分等;第四篇“以简单代复杂,微积分的实践之路”包括泰勒展开、傅里叶展开、 小
“苹果有3个,蜜橘有3个,两边‘同样’是3个。但‘苹果’与‘蜜橘’并不相同,如何能视为‘同样’呢?”数学是一门十分重要的学问,怎样将如此重要的学问表现得直观、形象呢?教科书和习题集上是满满当当枯燥的文
这套丛书中收入的著作,是自文艺复兴时期现代科学诞生以来,经过足够长的历史检验的科学经典。为了区别于时下被广泛使用的“经典”一词,我们称之为“科学元典”。我们这里所说的“经典”,不同于歌迷们所说的“经典”,也不同于表演艺术家们朗诵的“科学经典名篇”。受歌迷欢迎的流行歌曲属于“当代经典”,实际上是时尚的东西,其含义与我们所说的代表传统的经典恰恰相反。表演艺术家们朗诵的“科学经典名篇”多是表现科学家们的情感和生活态度的散文,甚至反映科学家生活的话剧台词,它们可能脸炙人口,是否属于人文领域里的经典姑且不论,但基本上没有科学内容。并非著名科学大师的一切言论或者是广为流传的作品都是科学经典。这里所谓的科学元典,是指科学经典中最基本、最重要的著作,是在人类智识史和人类文明史上划时代的丰碑
本书寻找最少且自封(不依赖于未证明的结果)的微积分,即最少的概念:微分和积分(实是一个概念,后者乃前者之和);最少的定理:基本定理和泰勒定理(实是一个定理,后者乃前者的连用);最简的解释(实是两张图)、最短的证明(实是两行算术,没有更多)、最少的数学符号(阿基米德的传统,多用文字和图形).这些概念、定理和证明只用到两张图、两行算术,不用实数,适合于文科;对理科还要加上最少的(即一个)微分方程,这时才用到实数. 简言之,最少的微积分=两个(或一个)概念 两个(或一个)定理十一个方程.归根结底,就是两张图、两行算术,加上一点实数,没有更多。
为什么教科书里的微积分那么难懂?不要怕,这本简单、有趣的微积分入门书,帮你7天搞定!我们害怕微积分,是因为有一大堆抽象、难懂的概念、公式。其实,知道这些公式、概念是怎样创造出来的,你就能很容易理解掌握,再也不会再害怕!微积分到底有什么用?微分的结果是斜率,可以分析变化,股票、汇率与摄影都会用到;积分是导数的逆运算,目的在于找出变化的规律,求出面积!