本书是一本非常有趣的微积分入门参考书,它从蚂蚁的视角来讲解微积分。当打开本书时,你会发现蚂蚁无处不在。借助小小的蚂蚁,本书将微积分的核心概念和原理用最简单、最有趣、最容易理解的方式呈现了出来。无论是初次学习微积分的学生,还是学习过微积分却一知半解的学生,抑或是希望重新梳理微积分知识的读者,都能从这本书中有所收获。它将帮助你更通透地理解微积分,理解数学,帮助你在数学等科目的学习中变得更从容自信。
本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种更有趣、更易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的 小书 。本书适合中学以上水平的数学爱好者、学生和教师阅读。
《微积分学教程(第1卷)(第8版)》是一部卓越的数学科学与教育著作。自*版问世50多年来,本书多次再版。至今仍被俄罗斯的综合大学以及技术和师范院校选作数学分析课程的基本教材之一。并被翻译成多种文字,在世界范围内广受欢迎。 本书所包括的主要内容是在20世纪初*后形成的现代数学分析的经典部分。本书*卷包括实变量一元与多元微分学及其基本应用;第二卷研究黎曼积分理论与级数理论;第三卷研究多重积分、曲线积分、曲面积分、斯蒂尔吉斯积分、傅里叶级数与傅里叶变换。 本书的特点是:一、含有大量例题与应用实例;二、材料的叙述通俗、详细和准确;三、在极少使用集合论的(包括记号)同时保持了叙述的全部严格性,以便读者容易初步掌握本课程的内容。 本书可供各级各类高等学校的数学分析与高等数学课程作为教学参考书,是数学
本书是一本 有趣的微积分入门参考书,它从蚂蚁的视角来讲解微积分。当打开本书时,你会发现蚂蚁无处不在。借助小小的蚂蚁,本书将微积分的核心概念和原理用 简单、 有趣、 容易理解的方式呈现了出来。无论是初次学习微积分的学生,还是学习过微积分却一知半解的学生,抑或是希望重新梳理微积分知识的读者,都能从这本书中有所收获。它将帮助你 通透地理解微积分,理解数学,帮助你在数学等科目的学习中变得 从容自信。
本书为微积分入门科普读物,书中以微积分的“思考方法”为核心,以生活例子通俗讲解了微积分的基本原理、公式推导以及实际应用意义,解答了微积分初学者遭遇的常见困惑。本书讲解循序渐进、生动亲切,没有烦琐计算、干涩理论,是一本只需“轻松阅读”便可以理解微积分原理的入门书。
作者以基于实际应用的课程开发设计模式,编写了经济类数学教材《微积分》。本书内容包括:函数极限与连续、导数与微分、中值定理及导数应用、不定积分、定积分及应用、微分方程与差分方程、二元函数微分学、二元函数积分学、无穷级数等。 基于实际应用的课程开发设计模式是本书的特色,基本应用技能和数学建模思想贯穿始终,本书学习目的明确,实际问题具体,有大量翔实的应用实例可供参考,有相当数量的应用问题可供实践。本书同时配有数字教学资源,极大地满足了广大师生的教学需要。 本书可作为本专科院校财经类专业微积分课程教材或参考书,也可作为应用型本科和成人高校相关教材。
本书是论述不等式的理论与方法的一本专门若作,主要围绕着若干著名的经典不等式,从它们的证明方法,相互之间的联系以及它们的应用等几个方面加以系统地论述.本书可供不等式研究工作者以及高等师范类院校数学教育专业的学生和数学爱好者参考阅读.
微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。《Barron'sAP微积分》(作者博克、霍基特)是关于介绍微积分的专著。
你是不是曾经被微分方程中貌似复杂和深奥的各种名词所困扰,不知道该从哪里人手学习?那么,这本书你了。《漫画微分方程》是世界上最简单的微分方程教科书,它通过漫画式的情景说明,让你边看故事边学知识,每读完一篇就能理解一个概念,每篇末还附有文字说明,只要阅读一下这些有趣的漫画故事,你将能在最短的时间内成为微分方程方面的达人!有趣的故事情节、时尚的漫画人物造型、细致的内容讲解定能给你留下深刻的印象,让你看过忘不了。通过这种轻松的阅读学习方式,读者可以掌握微分方程的常识。本书也可以作为广大青少年的微分方程知识读本。
为了帮助应用数学,计算数学,运筹控制等专业的教师、研究生和高年级大学生以及其他非数学专业的教学与研究人员和他们的研究生熟练地运用偏微分方程方法去解决科学技术和实际问题,本书把注意力集中在把一些常用方法(Green函数法、分离变量法、变分方法、特征线法以及量纲分析方法等)讲得尽可能透彻一些,把一些常见的物理和力学模型(非线性波、流体、气体和固体的运动模型等)推导得尽可能简明一些,把一些近代数学概念(Hilbert空间,Sobolev空间,广义函数,间断解等)阐述得尽可能浅近一些.要求读者只要具有数学分析,线性代数,常微分方程和初等数学物理方程等基础知识,就可顺利阅读此书,并有所裨益。 本书可以作为上述各数学专业和相关的物理、力学专业的研究生教学用书,以及大学数学物理方程课程的教学参考书.并希望能成为在实际工
《常微分方程定性与稳定性方法》是为理工类专业的硕士研究生和高年级本科生的需要所编写的一《常微分方程定性与稳定性方法》.《常微分方程定性与稳定性方法》为第二版.主要包括定性理论、稳定性理论和分支理论三个部分.内容着眼于应用的需要取材精练,注意概念实质的揭示、定理思路的阐述、应用方法的介绍和实际例子的分析,并配合内容引入计算机软件.每章后附有习题供读者练习.
本书介绍偏微分方程中典型方程的物理背景、主要解法及有关适定性的基本结论。初步介绍能量积分、积分变换、先验估计、变分法与广义解等重要概念.全书的论证及计算完整,难易层次分明,力求简明易读.本书可用于普通高等学校教材,也可用作自学读本。读者具有数学分析、常微分方程知识就可学习本书.略去选讲的材料,57课时可以基本讲完全书.
微积分最有用和急需的有两张表导数表和积分表怎么得到的?过去的证明又长又深陷入泥潭,但本书另择渠道,把证明复杂度降到几步高中数学,又短又浅,是教学的巨变,也圆了微积分高中化之梦!一举攻破两张表后还不够,大学专业或考研的学生要学更多(包括微分方程、多元微积分及抽象微积分)。这时,高中数学已不够用,必须有极限以及更高深的方法参战,本书只是按浅到深、急到缓顺序出场,概念能少就少,证明越浅越好,不误用不添乱,到了该出手才出手。书中还对比了微积分教学的过去和现在。
本书介绍傅里叶变换和拉普拉斯变换这两类积分变换的基本概念、性质及应用.每章章末都配有精选的习题和测试题,方便读者检验学习效果.书中性质等相关证明过程详细,注重数学思想、方法和技巧的运用,有利于培养灵活多样、举一反三的科学素养.书末附有常用函数的积分变换简表,可供学习时查用.本书可供高等学校理工科相关专业作为使用,也可作为任课教师的教学参考书,还可供有关工程技术人员参考使用.