本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种更有趣、更易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的 小书 。本书适合中学以上水平的数学爱好者、学生和教师阅读。
本书是一本 有趣的微积分入门参考书,它从蚂蚁的视角来讲解微积分。当打开本书时,你会发现蚂蚁无处不在。借助小小的蚂蚁,本书将微积分的核心概念和原理用 简单、 有趣、 容易理解的方式呈现了出来。无论是初次学习微积分的学生,还是学习过微积分却一知半解的学生,抑或是希望重新梳理微积分知识的读者,都能从这本书中有所收获。它将帮助你 通透地理解微积分,理解数学,帮助你在数学等科目的学习中变得 从容自信。
本书从常识性的平凡道理出发, 不用极限概念也不用无穷小概念, 直截了当地定义了函数的导数, 证明了导数的常用性质; 定义了定积分, 推出了微积分基本定理. 严谨而不失直观的推理, 颠覆了微积分必须以极限概念为基础的传统观点. 全书共 18 章, 前 10 章用作者发现的新方法构建了一元微积分的逻辑框架; 后 8 章阐述新方法与传统体系的关系和接轨的方案, 以及一些重要的微积分知识. 本书化解了传统微积分教学的若干**难点, 为建立高中和大学的微积分新体系描绘了蓝图.
本书从常识性的平凡道理出发, 不用极限概念也不用无穷小概念, 直截了当地定义了函数的导数, 证明了导数的常用性质; 定义了定积分, 推出了微积分基本定理. 严谨而不失直观的推理, 颠覆了微积分必须以极限概念为基础的传统观点. 全书共 18 章, 前 10 章用作者发现的新方法构建了一元微积分的逻辑框架; 后 8 章阐述新方法与传统体系的关系和接轨的方案, 以及一些重要的微积分知识. 本书化解了传统微积分教学的若干**难点, 为建立高中和大学的微积分新体系描绘了蓝图.
作者以基于实际应用的课程开发设计模式,编写了经济类数学教材《微积分》。本书内容包括:函数极限与连续、导数与微分、中值定理及导数应用、不定积分、定积分及应用、微分方程与差分方程、二元函数微分学、二元函数积分学、无穷级数等。 基于实际应用的课程开发设计模式是本书的特色,基本应用技能和数学建模思想贯穿始终,本书学习目的明确,实际问题具体,有大量翔实的应用实例可供参考,有相当数量的应用问题可供实践。本书同时配有数字教学资源,极大地满足了广大师生的教学需要。 本书可作为本专科院校财经类专业微积分课程教材或参考书,也可作为应用型本科和成人高校相关教材。
莱布尼兹和牛顿关于微积分优先权的争论闻名整个学术界,甚至是学术界之外。现在,学术界 ,莱布尼兹和牛顿分别独立地创立了微积分,只是牛顿先发明,莱布尼兹先发表。但这场争论在牛顿、莱布尼兹所生活的时代,甚至在他们去世后的很多年都很激烈,中间也发生了很多趣事。本书既包含了莱布尼兹创建微积分的过程,也包含了莱布尼兹在微积分优先权争论期间为自己做出的申辩,从中可以了解他创建微积分的过程以及这场争论发生的部分缘由和过程。另外,中译版本中还增加了大量插图,具有很强的可读性。
章 引言 1.1 实数连续统 1.2 函数的概念 1.3 初等函数 1.4 序列 1.5 数学归纳法 1.6 序列的极限 1.7 再论极限概念 1.8 单连续变量的函数的极限概念 补篇 S1 极限和数的概念 S2 关于连续函数的定理 S3 极坐标 S4 关于复数的注记 问题 第二章 积分学和微分学的基本概念 2.1 积分 2.2 积分的初等实例 2.3 积分的基本法则 2.4 作为上限之函数的积分-不定积分 2.5 用积分定义对数 2.6 指数函数和幂函数 2.7 X的任意次幂的积分 2.8 导数 2.9 积分、原函数的微积分基本定理 补篇 问题 第三章 微分法和积分法 部分 初等函数的微分和积分 3.1 *简单的微分法则及其应用 3.2 反函数的导数 3.3 指数函数的某些应用 3.5 双曲函数 3.6 值和*小值问题 3.7 函数的量阶
本书从常识性的平凡道理出发, 不用极限概念也不用无穷小概念, 直截了当地定义了函数的导数, 证明了导数的常用性质; 定义了定积分, 推出了微积分基本定理. 严谨而不失直观的推理, 颠覆了微积分必须以极限概念为基础的传统观点. 全书共 18 章, 前 10 章用作者发现的新方法构建了一元微积分的逻辑框架; 后 8 章阐述新方法与传统体系的关系和接轨的方案, 以及一些重要的微积分知识. 本书化解了传统微积分教学的若干**难点, 为建立高中和大学的微积分新体系描绘了蓝图.
本书从常识性的平凡道理出发, 不用极限概念也不用无穷小概念, 直截了当地定义了函数的导数, 证明了导数的常用性质; 定义了定积分, 推出了微积分基本定理. 严谨而不失直观的推理, 颠覆了微积分必须以极限概念为基础的传统观点. 全书共 18 章, 前 10 章用作者发现的新方法构建了一元微积分的逻辑框架; 后 8 章阐述新方法与传统体系的关系和接轨的方案, 以及一些重要的微积分知识. 本书化解了传统微积分教学的若干**难点, 为建立高中和大学的微积分新体系描绘了蓝图.
本书是论述不等式的理论与方法的一本专门若作,主要围绕着若干著名的经典不等式,从它们的证明方法,相互之间的联系以及它们的应用等几个方面加以系统地论述.本书可供不等式研究工作者以及高等师范类院校数学教育专业的学生和数学爱好者参考阅读.
《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》是《微积分之屠龙宝刀》的续集,内容从极座标、无穷级数的收敛、空间向量,到参数曲线、多变数函数、偏导数、多重积分、向量场。想换一种方式,理解这些令人头疼的课题吗?欢迎你拿起《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》,跟随三位作者的脚步,一同披荆斩棘,度过危机,不管你是理工科系的学生,还是学商业、国际贸易、经济,可能都有这样的微积分修课经验:无论多么专心听讲教授讲的内容你仍然听不懂。《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》试图告诉读者:“千万不要误以为听不懂全是自己的错!”