Banach空间中的常微分方程理论是近二三十年发展起来的一个新的数学分支,它把常微分方程理论和泛函分析理论结合起来,利用泛函分析方法研究Banach空间中的常微分方程。它的理论在无穷常微分方程组、临界点理论、偏微分方程、不动点定理等多方面都有广泛的应用。特别是,临界点理论中常用的最速下降流线,即以是Banach空间常微分程方程理论作基础。由于它的重要性,又比较新,故被列为我国自然科学基金重点资助的项目之一。在我国,研究Banach空间常微分方程理论的人很少,1985年,在第五届全国非线性泛函分析会议上,作者和孙经先副教授合作了《Banach空间中的常微分方程理论》综合报告,引起了许多人的兴趣。本书显然可作为综合性大学和高等师范大学有关专业的研究生教材,也可供有关教师和科技大工作者进行科研时参考。
《变分和偏微分方法在图像分割中的应用》主要介绍了变分理论和偏微分方法在图像分割领域的应用。针对分割灰度分布不均匀图像介绍了局部驱动核的活动轮廓模型;针对分割多相复杂场景图像介绍了基于竞争区域的多分辨率多区域水平集分割方法、基于统计方法的区域合并多水平集分割方法和多层水平集分割方法。
为什么教科书里的微积分那么难懂?不要怕,这本简单、有趣的微积分入门书,帮你7天搞定!我们害怕微积分,是因为有一大堆抽象、难懂的概念、公式。其实,知道这些公式、概念是怎样创造出来的,你就能很容易理解掌握,再也不会再害怕!微积分到底有什么用?微分的结果是斜率,可以分析变化,股票、汇率与摄影都会用到;积分是导数的逆运算,目的在于找出变化的规律,求出面积……
本书介绍了十多位优秀的数学家:牛顿、莱布尼茨、伯努利兄弟、欧拉、柯西、黎曼、刘维尔、魏尔斯特拉斯、康托尔、沃尔泰拉、贝尔、勒贝格。然而,这不是一本数学家的传记,而是一座展示微积分宏伟画卷的陈列室。作者选择介绍了历史上的若干杰作(重要定理),优雅地呈现了微积分从创建到完善的漫长、曲折的过程。 本书兼具趣味性和学术性,对基础知识的要求很低,可作为本科生、研究生和数学工作者的微积分补充读物,更是数学爱好者的佳肴。
《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》是《微积分之屠龙宝刀》的续集,内容从极座标、无穷级数的收敛、空间向量,到参数曲线、多变数函数、偏导数、多重积分、向量场。想换一种方式,理解这些令人头疼的课题吗?欢迎你拿起《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》,跟随三位作者的脚步,一同披荆斩棘,度过危机,不管你是理工科系的学生,还是学商业、国际贸易、经济,可能都有这样的微积分修课经验:无论多么专心听讲教授讲的内容你仍然听不懂。《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》试图告诉读者:“千万不要误以为听不懂全是自己的错!”
本书通过大量丰富的实例,帮助读者实现从基本的常微分方程向更多高级概念(偏微分方程、傅里叶级数和边界值问题等)的顺利过渡。作者轻松的语言风格使得书中的材料通俗易懂,尤其适合那些渴望了解更多和更深微积分知识的读者。 本书在第1版的基础上增加了偏微分方程在工程和物理学方面的应用,并且提供了更多数学证明和偏微分方程的原理。此外,本书的每一小节后都配备了大量的习题,并在页边提供了注释、国标或重要的公式等,突出了书中的重点与难点,方便读者自学。 本书提供读者利用计算机辅助学习,旨在使读者更直观、更清晰地理解和掌握书中所讲述的题材。读者可以利用从作者网站上下载的Mathematica文件进行上机实践。
本书第四版对2004年第三版的内容作了全面细致的修订,并补充了第三版出版以来不等式研究的新的重要成果,充分反映了20世纪以来,特别是20世纪90年代以来不等式理论和方法的进展。全书共分17章,包含了美国数学评论(MR)2000主题分类中所有关于不等式论题的40个三级分类项目,还包括了外历年来大、中学生各类数学竞赛和研究生入学考试中所出现的新的不等式,以及工程技术问题中常用的不等式,所收录的不等式增加到6千多个,第四版还总结了不等式的常用证法55种,提出了212个未解决或值得进一步研究的问题。由于不等式在数学各个领域和科学技术中都是不可缺少的基本工具,加上本书起点低,因而本书的读者面是非常广泛的,各种不同专业水平的读者,不论是大中学师生,数学研究者,还是工程技术人员,都可以从中找到各自感兴趣的有用材料和研究课题。
本书列入和Springer合作出版的《非线性物理科学》系列。一个运动质点位置函数的一阶导数表示速度,二阶导数表示加速度,那么分数阶导数的物理意义又是什么呢?分数阶导数是因何而产生,它对现代分析学在物理学的应用产生什么冲击,在将来又有什么发展?《物理及工程中的分数维微积分》二卷本将为你提供一个详细诠释。本书的第Ⅰ卷介绍分数维微积分的数学基础和相应的理论,为这个现代分析学中的重要分支提供了详细而又清晰的分析与介绍。第Ⅱ卷是应用篇,讲述了分数维微积分在物理学中的实际的应用。在湍流与半导体、等离子与热力学、力学与量子光学、纳米物理学与天体物理学等学科应用方面,本书给读者展示一个全新的处理方式和新锐的视角。本书适合于对概率和统计、数学建模和数值模拟方面感兴趣的学生、工程师、物理学家以及其他专家和
本书全面系统地论述微分方程的分析力学方法,包括微分方程的力学化、降阶法、Hamilton-Jacobi方法、Poisson方法、Noether方法、Hojman方法、场方法、势积分方法、共形不变性、Jacobi终乘子、Lagrange方法与Birkhoff方法、力学化与稳定性等。本书可作为高等学校力学、数学、物理学,以及工程专业高年级本科生和研究生的教学参考书,亦可供有关教师、力学工作者和科技人员参考。
本书打破模式化和形式化的编书体系,在逻辑化渐进式的编书理念指引下,对当今教材的结构进行了全面的革新,以兴趣为主导、以逻辑为基础,让大家在轻松学习微积分的同时深刻理解其本质,掌握其基本方法。本书从古代“割圆术”的极限讲起,依照历史发展的时间顺序和学科发展的逻辑顺序全面解读微积分。从而揭示出微积分的本质。讲解微积分的基本知识和方法,然后揭示出“无穷小”这个概念的重要性。在此基础上。深入讲解高等微积分的知识,如傅立叶级数、椭圆积分和场论等。微积分是当今大学一年级学生几乎必修的基础课程,但是本书起点低。具有科普的性质,适合具有高中学历者自学:又因为本书有教材的特点。尽量做到对知识的全面和深入讲解,所以可以作为大学生的课外补充材料,尤其是针对那些对微积分头疼的以及学习过微积分但是现在