本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种更有趣、更易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的 小书 。本书适合中学以上水平的数学爱好者、学生和教师阅读。
本书是美国著名数学家Peter Lax与康奈尔大学数学教授Maria Terrell合作的多元微积分教材,作为《微积分及其应用》(中译本见本丛书第32号)的续篇,其内容涵盖了平行于一元微积分的基础部分,包括:向量和矩阵、多元函数的连续性、多元函数的微分及其应用、多元函数的积分、向量值函数在曲线与曲面上的积分,以及作为一元函数微积分基本定理的多元推广??格林定理、散度定理、斯托克斯定理.此外,作者在散度定理、斯托克斯定理这一章还补充了对守恒律的介绍,并专辟一章介绍了数学物理中典型的几类偏微分方程.跟Lax的其他教材风格一致,作者在本书中一如既往地贯彻了牛顿的主张“达到理解的绝佳方式是通过少量好的例子”.Lax对数学之应用造诣非凡,他成功地将来自物理的诸多例子融入这两本微积分教材,将数学与物理融会贯通.本书末尾提供了部分习题的答案.
本书是美国著名数学家彼得·拉克斯与康奈尔大学数学教授玛丽亚·特雷尔合著的单变量微积分教材,内容覆盖了一元微积分的基础,包括:数列的极限、函数的连续性、函数的微分、可微函数的基本理论、导数的应用、函数的积分、积分的方法、积分的近似计算,以及微分方程。另有两章介绍复数与概率。本书与拉克斯的另一著名教材《线性代数及其应用》简明清晰、行云流水的风格一致,通过引入许多背景自然的应用实例,两位作者致力于引导读者对微积分这一重要的基础课题获得理解。本书末尾还提供了部分习题的答案。
本书在 Sobolev 空间框架下, 介绍了积分泛函极小问题的现代偏微分方程的理论, 内容包括 Sobolev 函数空间及各种性质;经典变分方法:一阶变分、二阶变分、极小点存在的充分和必要条件、条件极值的 Lagrange 乘子法等;变分法的直接方法:下半连续性、补偿紧性、集中紧性、 Ekeland变分、Nehari 技巧等;三维欧氏空间极小曲面的 Douglas 方法和等周不等式的证明.
本书讲述偏微分方程现代理论的最基础部分,内容共五章.其中前两章系统介绍函数空间、广义函数和Fourier分析理论的最基础部分,是学习偏微分方程现代理论必须具备的最基本的分析学知识,第3和第4两章系统讲述了二阶线性椭圆型方程和二阶线性抛物型、双曲型和Schr?dinger型三类发展型方程的最基础理论,这两章内容的学习能够基本满足希望专门研究椭圆型方程、抛物型方程或非线性发展方程以及相关学科领域读者的需要.最后一章简要介绍线性偏微分方程一般理论和拟微分算子理论.本书最突出的特点是把椭圆型方程和抛物型方程的Cμ理论与Lp理论都用Fourier分析理论做了统一的处理,并把这些理论都构建在L2理论之上,从而使得这些以前需要与偏微分方程的Fourier分析方法独立地学习的不同理论体系很自然地融合在一起.
本书内容包括常微分方程初值、边值问题的数值解法,抛物型、双曲型及椭圆型偏微分方程的差分解法,偏微分方程和边界积分方程的有限元解法和边界元解法.本书选材力求通用而新颖,既介绍了在科学和工程计算中常用的典型数值计算方法,又包含了近年计算数学研究的一些新的进展,包括作者本人的若干研究成果.本书以介绍微分方程的数值求解方法为主,但也涉及有关的理论,叙述和论证力求既深入浅出,又严格准确.
本书根据S.Kobayashi and K.Nomizu 所著的Foundations of Defferential Geometry (Wiley & Sons公司出版的Wiley经典文库丛书(1996 版)(第一卷)译出。本卷首先给出了若干必要的预备知识,主要包括微分流形、张量代数与张量分析、Lie群和纤维丛等。本卷的中心内容是联络理论,不仅论述了一般联络理论,还具体讲述了线性联络、仿射联络、黎曼联络等。然后讲述了曲率形式和空间形式以及各种空间变换。此外,本卷还给出了7个附录和11个注释,分别介绍了若干备查知识和历史背景材料。
本书系统讲述了偏微分方程一般理论的主要结果和研究方法。主要内容包括:实分析与泛函分析在Sobolev空间中的应用,整数次与分数次Sobolev空间的基本性质和基本技巧,如逼近理论、紧嵌入理论、迹定理、单位分解等基本理论以及局部化、平直化、光滑化和紧支化等技巧,二阶线性椭圆方程的各类边值问题弱解的存在唯一性、正则性、极值原理、Schauder理论等方面的主要结果以及泛函方法、特征值方法、差商方法等现代偏微分方程方法和De Giorgi迭代技巧,二阶线性抛物方程和二阶线性双曲方程的基本理论,弱解的存在唯一性、正则性,能量方法,Galerkin方法,Lions定理与发展方程以及线性抛物型方程的Schauder理论和Lp理论,一阶线性双曲型方程式的特征线方法,一阶线性双曲型方程组的基本概念和对称双曲系统的黏性消失法等。
赵利彬等编著的《经济数学基础微积分》是在贯彻落实*“高等教育面向21世纪教学内容和课程体系改革计划”要求的基础上,按照国家非数学类专业数学基础课程教学指导委员会*提出的“经济管理类本科数学基础课程教学基本要求”,为适应21世纪教学改革的需要与市场经济对人才的需求,结合一些本专科院校学生的基础和特点进行编写的。 《经济数学基础微积分》内容包括:函数、极限与连续、导数与微分、中值定理与导数应用、不定积分、定积分、定积分应用、广义积分、向量代数与空间解析几何、多元函数微分学及其应用、重积分、无穷级数、常微分方程。书内各节后均配有相应的习题,书末附有习题参考答案。 《经济数学基础微积分》体系结构严谨、知识系统、讲解透彻、内容难度适宜、语言通俗易懂、例题习题丰富。适合作为普通高等院
本书用简练的文字,介绍了70位微积分的创立者及其先驱的简要经历、学术成就、治学态度、治学方法,概括性地论述了微积分的萌芽、创建、发展过程,其中还包含了一些科学家的名言和趣闻轶事。 本书可以作为学习数学史的选讲教材,也是“高等数学”课程的一本教学参考书,既可供各类高等学校师生参考,又可供广大数学爱好者阅读。
本书首先在前三章介绍了数学机械化软件平台MMP的基本功能与使用方法,然后在后面的各章中通过MMP的运行实例介绍了数学机械化的基本理论与*近展,特别是方程求解与机器证明方面的*研究成果。第四章介绍了多项式方程系统,常微分方程系统,偏微分方程系统的吴特征列方法与投影定理。第五章介绍初等与微分几何中定理自动证明与自动发现的吴方法与若干*进展。第六章介绍代数方程求解的吴特征列方法以及参数方程求解、预解式理论及其在机器人、曲面拼接、代数簇隐式化中的应用。第七章介绍微分方程求解的吴特征列方法以及微分方程初等函数解、行波解、幂级数解的求解方法。第八章介绍代数系统全局优化的吴有限核定理以及不等式的自动证明与发现。每章末尾还对本章的内容与MMP实现的方法所涉及的文献进行了介绍。 本书既可以作为MMP的使用手
本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种 有趣、 易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的“小书”。本书适合中学以上水平的数学爱好者、学生和教师阅读。
《常微分方程》是常微分方程基础课教材,内容涉及分离变量法、常系数线性微分方程和方程组、变系数线性微分方程和方程组、非线性微分方程,以及定性和稳定性理论初步等。 《常微分方程》理论严谨,叙述清楚且深入浅出,特别是对常系数线性微分方程这一部分的讲解有独到之处,其中待定系数法的证法非常新颖,而且相当简洁,胜过了传统教材的证法。 《常微分方程》适合于综合性大学、理工科大学及师范类院校的数学专业学生使用或作为参考书籍。
本书是一本专门为理工科高等职业教育编写的大专数学教材。内容主要包括:微积分,级数与微分方程,常微分方程,线性代数,概率论与数理统计及数学建模。该书具有如下特点:采用模块式,使接口放宽,适用各不同层次的学生使用;注重实用性,帮助读者掌握方法,增加具有启发性的应用性题目;采用手册型,便于查阅,方便读者查用;便于自学,通俗易懂、可使读者获得较好的学习效果。 该书适用于大专院校的学生及自学高等数学的读者使用。
本书按照一般的微积分学教材的编排方式,系统地论述了基于MATLAB 语言编程的方法来实现微积分问题的求解。全书内容包括函数与序列的描述及图形绘制、极限问题的求解、导数与微分问题的求解、积分问题的求解、函数的逼近与级数求和、数值导数与数值积分等。此外,书中还概括性地介绍了积分变换、分数阶微积分等内容。 本书可以作为高等学校理工科各类专业的本科生与研究生学习计算机数学语言(MATLAB)的教材,也可以作为一般读者学习微积分学的辅助教材,帮助读者从另一个角度认识微积分学问题的求解方法,并可以作为查询微积分数学问题求解方法的工具书。
兰辉、刘庆生主编的《文科微积分/同济数学系列丛书》是同济大学数学系承担高等数学课程的骨干教师,在借鉴了同济大学相关优秀教材的基础上编写而成的。全书通过探讨数学思想本质的方法阐述数学理论,避免过多的数学公式和繁琐的计算技巧,注重数学理论与实际生活的联系,直观易懂,深入浅出,符合文科学生的学习特点;并通过巧妙地使用数学史、科学家文献中的原始论述、数学理论与实际生活的联系等,使历史背景与理论知识无缝对接,延伸了知识点的内涵。 《文科微积分/同济数学系列丛书》内容包括一元函数微积分理论及应用,可供高等院校文科专业的学生使用,也可供相关人员参考。
微积分是我校各专业的一门基础课程,作为我校“211工程”建设的课题之一,我们在编写《微积分》教材的过程中所遵循的指导思想主要有以下几点: 1、坚持正确的政治方向和理论联系实际的原则,尽可能体现经贸大学对基础教学知识的需要,反映本校的特色; 2、注意总结我校多年来在微积分教学中的经验,吸取其他院校的教材编写经验以及适应学生毕业后考研的需要; 3、保持微积分理论的完整性、严密性,培训学生逻辑思维能力、计算能力和在处理经济贸易问题中运用数学方法的初步技能; 4、教材中编写了大量的例题和习题并配有参考答案,其难度多数适应我校的一般需要,同时也兼顾考研或少数学生钻研的需要。