《AP微积分辅导手册》融汇众多成功案例,直击中国学生的薄弱点,解构整门考试的知识点、考点,为参加AP微积分考试的中国学生提供一套应对AP微积分(AB BC)考试的完备方案。希望考生学完本书内容,可以顺利通过考试。 《AP微积分辅导手册》一书的内容有:函数、极限和连续性、导数、微分、不定积分和定积分、积分的应用、微分方程和级数,涵盖了AP微积分AB和AP微积分BC考试大纲中要求的全部考点,并且有相关的例题演示,在理论讲解上兼顾实战性。 本书适合准备前往海外读大学的高中生,准备参加AP考试的考生学习使用,同时可用作相关培训和辅导机构的参考教材。
本书是由国家自然科学基金委员会数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》之一。 本书是俄罗斯莫斯科大学经典数学教材之一,是微分几何教程的简明阐述,在大学数学系两个学期中讲授。内容包含:一般拓扑,非线性坐标系,光滑流形的理论,曲线论和曲面论,变换群,张量分析和黎曼几何,积分法和同调论,曲面的基本群,黎曼几何中的变分原理。叙述中用大量的例子说明并附有习题,常有补充的材料。 本书适合数学、物理及相关专业的高年级本科生、研究生、高校教师和研究人员参考使用。
本书是俄罗斯科学院院士О.А.奥列尼克多年来在莫斯科大学数学力学系为大学三年级学生讲授该课程基础上的扩充。内容包括偏微分方程理论的古典与现代理论的基础部分,以及泛函分析、广义函数理论、函数空间理论方面的一些知识。作者是И.Г.彼得罗夫斯基的学生,在偏微分方程这个方向享有盛名。此书反映了莫斯科大学在这个课程上,20世纪后半叶至今的新情况,可供我国偏微分方程课教学参考。 本书可供综合大学和师范院校数学、物理、力学及相关专业的教师和学生参考,也可供工科院校应用数学系师生参考。
求非线性问题的解析近似解最著名的是摄动法,已有数百年历史,但其有效性强烈依赖物理小参数,且不能保证摄动数的收敛,原则上仅适用于弱非线性问题。本书作者1992年提出的同伦分析方法,其有效性与是否存在物理小参数无关,能确保级数解收敛,克服了摄动法几乎所有的局限性,被国内外学者誉为该领域的一个重要里程碑。 本书分为上下两卷。上卷描述同伦分析方法的基本思想和相关理论;下卷给出基于同伦分析方法和数学软件Mathematica开发的软件包BVPh 1.0及其应用举例,以及求解非线性偏微分方程的一些典型例子。本书适合大学高年级本科生和研究生,以及应用数学、物理、力学、金融、工程等众多领域的科学家和研究人员阅读。
本书主要介绍了复数、复变量、复变函数、微分方程、重积分、线积分、傅里叶级数、C.A.恰普雷金院士的微分方程近似积分法等知识,其中着重介绍了重积分及其在几何学中的应用,同时配有相应的例题及解答。 本书适合高等院校数学专业师生和数学爱好者参考阅读。
本书在 Sobolev 空间框架下, 介绍了积分泛函极小问题的现代偏微分方程的理论, 内容包括 Sobolev 函数空间及各种性质;经典变分方法:一阶变分、二阶变分、极小点存在的充分和必要条件、条件极值的 Lagrange 乘子法等;变分法的直接方法:下半连续性、补偿紧性、集中紧性、 Ekeland变分、Nehari 技巧等;三维欧氏空间极小曲面的 Douglas 方法和等周不等式的证明.
本书一部讲述代数曲线的入门书籍,可以作为一二年级数学专业的教程,具备基本的微积分知识可以完全读懂这本书。通过分类实数上的不可约三次曲线和证明它们的点能够形成abelian群,使得椭圆曲线的讲述非常易于学习,书中包括了两曲线相交数上的bezout定理的简单证明。在这新的版本中深入研究了幂级数参化曲线,并且列举出了参化的两大用处,计数曲线的多相交和曲线对偶性的证明及其重叠。目次:曲线的相交;二次曲线;三次曲线;参化曲线。
本书是论述不等式的理论与方法的一本专门著作,主要介绍了一些特殊类型的不等式,它们主要是三角不等式与几何不等式,以及*值不等式、复数不等式、数列不等式、函数不等式等. 本书可供不等式研究工作者以及高等师范类院校数学教育专业的学生和数学爱好者参考阅读.
本书是常微分方程理论、方法与应用有机结合的一本教材,保持了我国现行教材理论性强、方法多样、技巧和实例丰富等特点,并结合国外教材强调建模、应用和计算机等特点,形成理论、方法、建模、应用、计算机互相渗透与补充的新体系。不仅能够训练学生严密的数学思维方式,而且可以引导学生通过建立数学模型解决实际问题。既讲述求解各类微分方程解析解、数值解的方法,又介绍用计算机进行理论分析、求解方程和给出图形显示的过程。本书的主要内容包括求解各类微分方程的方法,常微分方程的基本理论、近似方法及其实现,以及建立微分方程模型解决实际问题。
本书注重常微分方程理论方法的同时,也注重常微分方程的工程实际应用。旨在提高学生发现问题和解决问题的能力,通过理论和实践的反复循环,实现螺旋式上升。 本书共七章。第一章简要介绍了工程问题的常微分方程建模,微分方程和动力系统的基本概念。第二章阐述了常微分方程的初等积分法,包括一些经典的一阶微分方程和特殊的高阶微分方程的解法。第三章给出了常微分方程的基本定理,特别介绍线性常微分方程的一些基本概念和基础理论。第四章和第五章分别讲述了线性常微分方程和线性常微分方程组,包括基本概念、求解方法及工程应用。第六章主要介绍了非线性微分方程的定性分析,包括奇点的稳定性、中心流形定理、分岔等。第七章阐述了常微分方程的数值解法,主要介绍了欧拉法、改进的欧拉法和龙格库塔方法,结合Matlab和Maple软件实现微
本书通过一系列重要的数学地标,系统地梳理了微积分理论,既包含课堂上没讲授的数学通识内容,又包含对一些复杂知识点的细致拆解,还包含微积分在现实生活中的应用,帮助读者开阔数学视野、提高数学思维、加深对数学的理解。 全书共分为四篇: 篇“数学通识,一些你应该了解的观点和事实”为读者构建数学学习的理念和方法;第二篇“从有限到无穷,初等数学与高等数学的分水岭”解释高等数学何以称为高等?大学数学内容与中学数学内容相比是否存在一个明确的分水岭?为微积分的引入做好铺垫;第三篇“从局部到整体,微积分的华彩乐章”是全书核心,借助“局部—整体原则”讨论函数极限、连续性、无穷小及其比较、导数与微分、微积分基本定理、多元函数微积分等;第四篇“以简单代复杂,微积分的实践之路”包括泰勒展开、傅里叶展开、
本书的主要内容包括函数的极限与连续、导数与微分及其应用、不定积分与定积分及其应用等。本书突出 数学为根本,应用为导向 的特点,内容难度适宜,语言通俗易懂,逻辑清晰。本书每节重点内容均配套微课讲解视频,每章附有详细的思维导图,梳理脉络,易教利学。每节后附有 基础训练 与 提升训练 分层练习,每章结束配套总结提升习题,同时提供参考答案。本书配套习题题型丰富,满足学生参加高等教育自考、专升本等进一步的升学要求。本书可作为高职公共基础课教材使用,也可供感兴趣的读者阅读参考。
目前《微积分/数学分析》课程的教材已经很多,但基本上都是为数学专业编写的,因而理论的完整性、证明的严格性强调的比较充分;为理工科非数学类专业编写的《微积分》教材则往往更多侧重在计算方面。实际上,对于不少非数学专业的优秀理工科学生而言,微积分计算技能的培养和严谨的数学思维的训练常常是都需要的;另一方面,即便对于数学专业的同学,在展示完整优美的数学理论体系的同时,往往也需要一些如何思考、把握相关内容的来源、基本(粗糙一些)的思路的引导。随着新一代学生在中学教育阶段严谨的逻辑训练的减弱(例如,平面几何的训练比上世纪学生有明显的减退),以及对于学习完整演绎方式构建微积分体系的动力减弱,需要以一种更为直观、生动的方式传授给学生微积分的内在动机、目标和各部分的关系。这样才能吸引他们投
本书是一本 有趣的微积分入门参考书,它从蚂蚁的视角来讲解微积分。当打开本书时,你会发现蚂蚁无处不在。借助小小的蚂蚁,本书将微积分的核心概念和原理用 简单、 有趣、 容易理解的方式呈现了出来。无论是初次学习微积分的学生,还是学习过微积分却一知半解的学生,抑或是希望重新梳理微积分知识的读者,都能从这本书中有所收获。它将帮助你 通透地理解微积分,理解数学,帮助你在数学等科目的学习中变得 从容自信。
微积分无疑是人类 重大的数学发明之一,其对于现代科学技术的意义已经无需多言,从几乎所有理工科专业的学生都要在入学之后立刻学习“高等数学”或“数学分析”课程即可看出。本书首先介绍微积分到数学分析的发展历史,着重于其中碰到的问题和解决问题的方法。然后本书从实数公理、自然数、有理数、无理数的实际模型开始,完整、严谨地向读者介绍美丽的微积分大厦的建造过程。作者希望为喜爱数学,想进一步了解数学的基础、学习数学严谨逻辑推理的读者提供一本故事化一点、话多啰嗦明白一点、可读性强的书。将微积分尽可能平民化,使 多的人能够通过阅读学习一点这方面的知识,得到一些数学的逻辑训练是作者的追求。 本书也可作为大学“高等数学”“数学分析”课程的参考书,相信读者会在本书中 深地体会微积分的恢弘与幽远。对于希
自动微分方法是计算函数导数的有效工具.传统观念认为,计算H元函数的一个偏导数所需要的计算量与计算该函数的一个函数值的计算量大致相当.因此,计算,z元函数的梯度(,z个偏导数),所需计算量相当于函数值计算量的H倍.通常的方法,如数值微分(差商近似)和符号微分,都是如此.然而自动微分颠覆了这一传统观念.它计算函数梯度的计算量只相当于计算函数本身的数倍,而与自变量个数n无关.这一令人吃惊的结果,激发了人们对自动微分的强烈兴趣.近二十年来,自动微分已成为国际上人们关注的热点,但在国内的研究依然不足.据作者所知,本书是国内第一本对自动微分方法及其在最优化中的应用进行介绍和论述的书籍.本书由浅人深,系统地介绍自动微分的基本理论、算法设计和实现的软件工具,包括低阶和高阶微分方法.作为应用范例,
本书是教材微积分(第四版)的配套用书,旨在帮助学生自学以及方便教材教学,本书的章节安排与教材相同,内容主要包括各节的学习要点、学习疑难点、典型例题解析及教材习题的解答。
本书是吉林省精品课“经济数学”项目及吉林省教育厅高等教育“十二五”规划项目研究成果之一,也是科学出版社重点规划教材,是高等学校(独立学院)重点规划经济数学系列精品教材的部《经济数学Ⅰ微积分》.内容包括函数、极限与连续、导数与微分、中值定理与导数的应用、不定积分、定积分、无穷级数、多元函数微积分学、微分方程与差分方程简介等九章内容.每章配有习题和适当的提高选做题,书末给出其参考答案,便于对照自测学习.
本套书由《微积分I(第二版)》、《微积分II(第二版)》两本书组成.《微积分I(第二版)》内容包括极限与函数的连续性、导数与微分、导数的应用、不定积分、定积分及其应用、广义积分、向量代数与空间解析几何.在附录中简介了行列式和矩阵的部分内容.《微积分II(第二版)》内容包括多元函数微分学、二重积分、三重积分及其应用、曲线积分、曲面积分、场论初步、数项级数、幂级数、傅里叶级数、广义积分的敛散性的判别法、常微分方程初步等.本套书继承了微积分的传统特色,内容安排紧凑合理,例题精练,习题量适难易恰当.